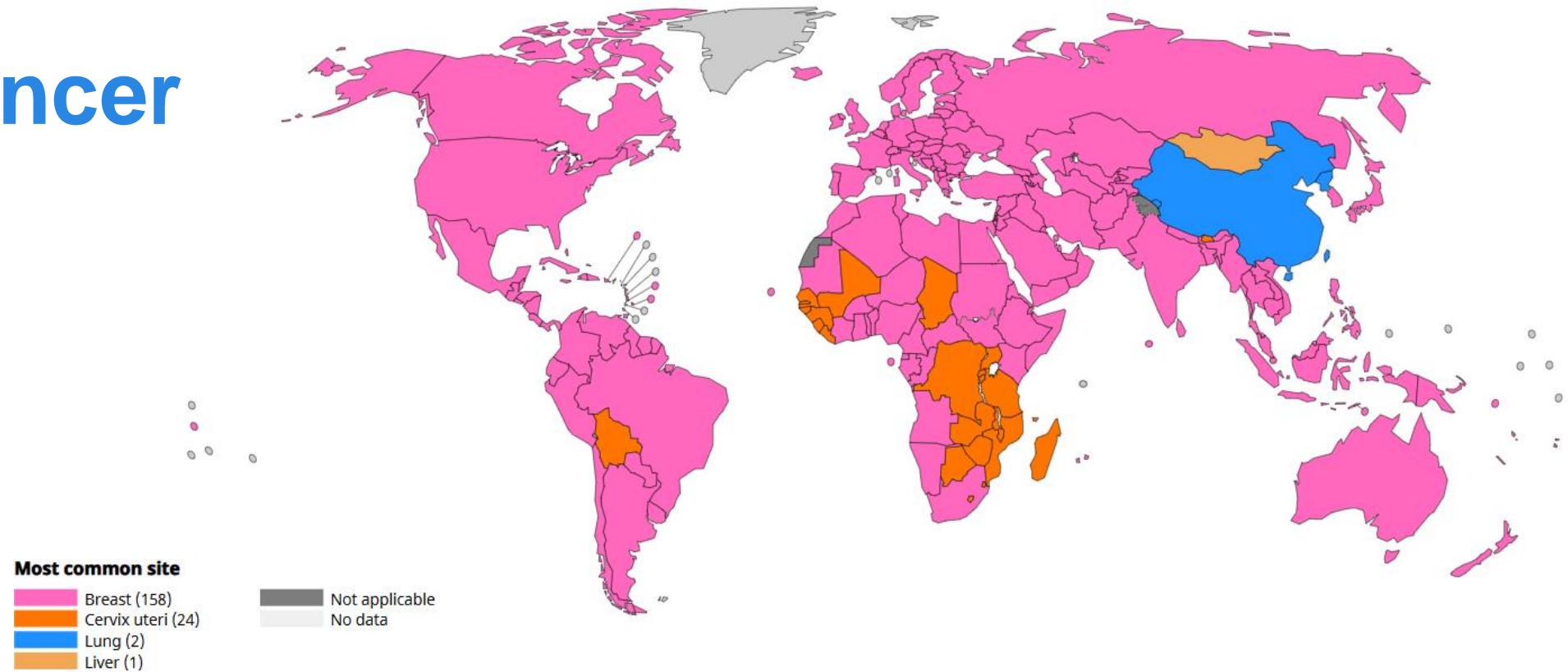


Memorial Sloan Kettering
Cancer Center™


Management of High-Risk Breast Lesions

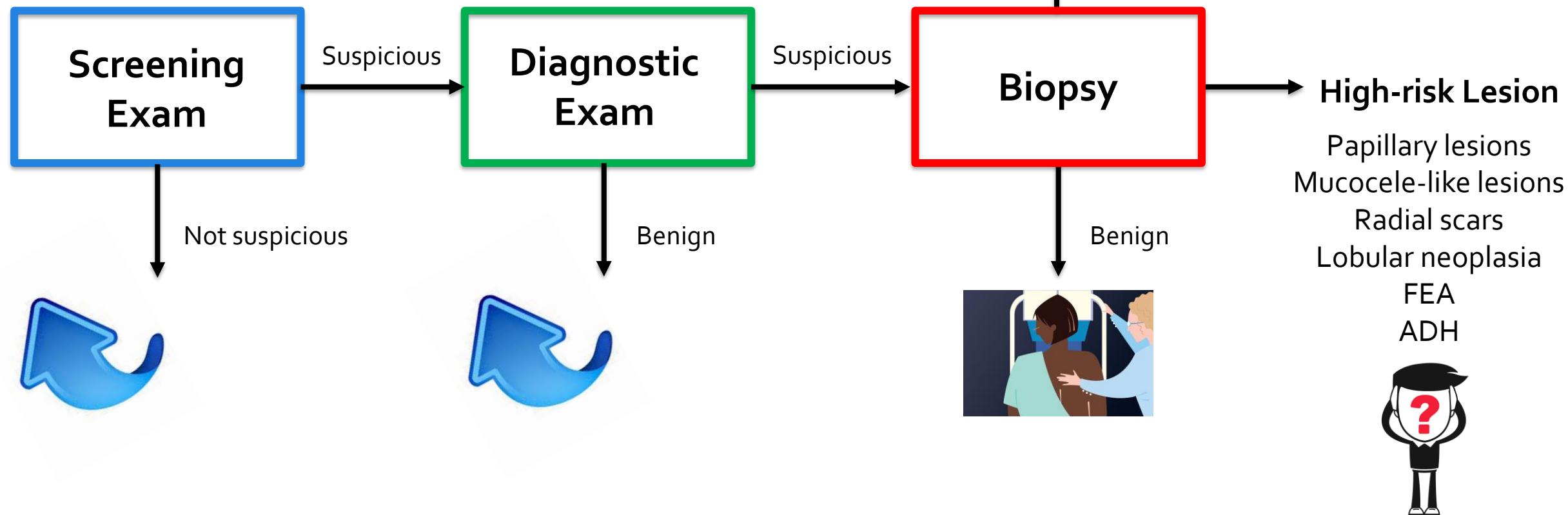
Anne Grabenstetter, MD
Assistant Attending
grabensa@mskcc.org

I have nothing to disclose related to the content of this presentation.

Breast Cancer

Breast cancer is the most commonly diagnosed cancer in women in 157 countries

- Accounts for 1 in 4 cancer cases


Breast cancer is the leading cause of death from cancer in women, with a disproportionate number of these deaths occurring in low-resource settings

Memorial Sloan Kettering
Cancer Center™

Available at: <https://gco.iarc.fr/today/en/dataviz/maps-most-common-sites?mode=cancer&key=total&sexes=2&cancers=20>

Breast Cancer Screening

Variability in the Management Recommendations Given for High-risk Breast Lesions Detected on Image-guided Core Needle Biopsy at U.S. Academic Institutions

Eniola Falomo, MD^{a,*}, Catherine Adejumo, MBBS^b, Kathryn A. Carson, ScM^c,
Susan Harvey, MD^a, Lisa Mullen, MD^a, Kelly Myers, MD^a

^a The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD

^b Emory University School of Public Health, Atlanta, GA

^c Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

Survey was 9 questions:

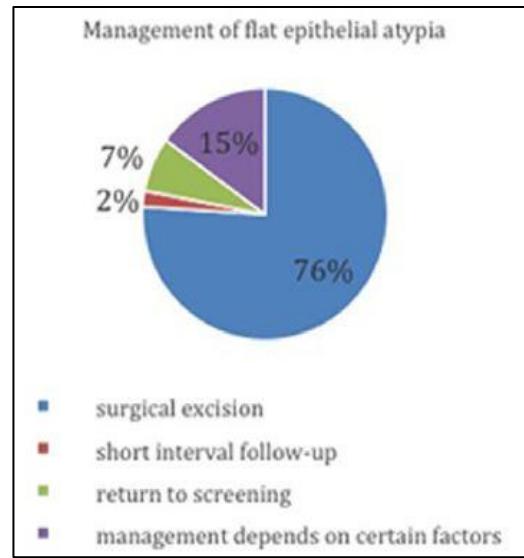
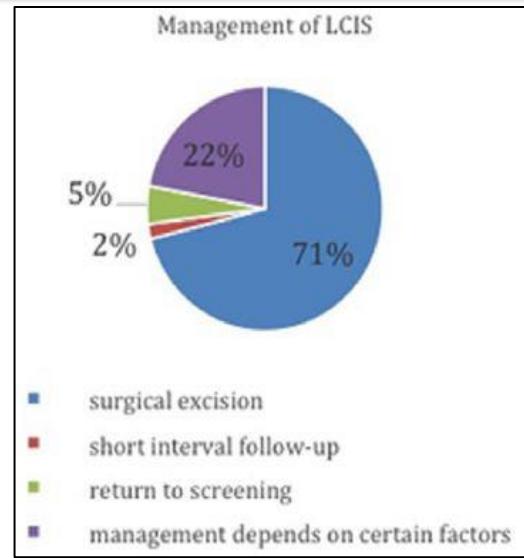
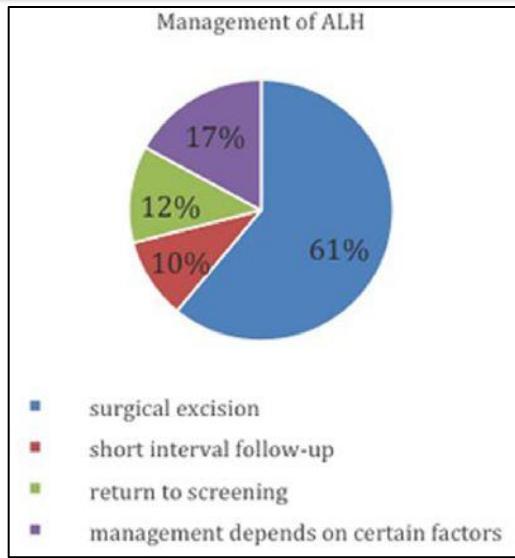
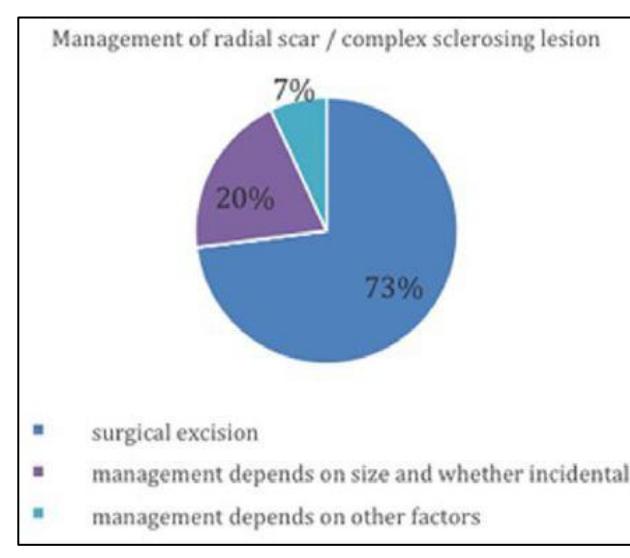
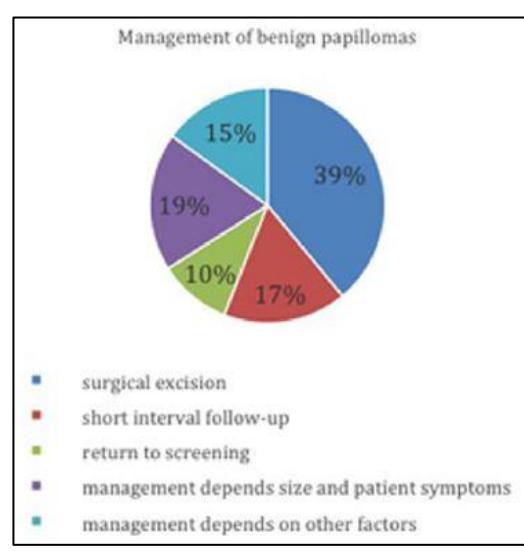
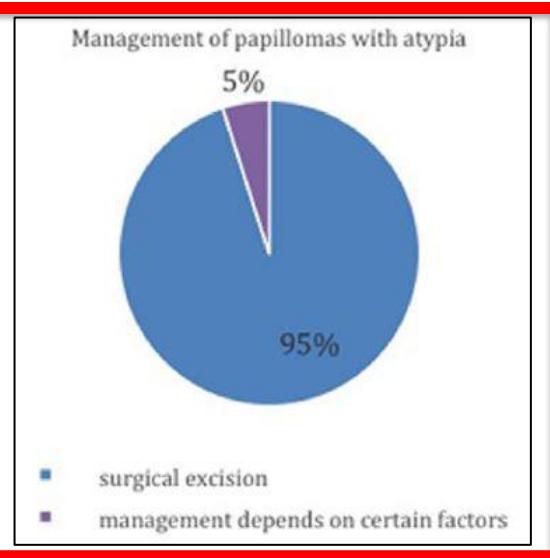
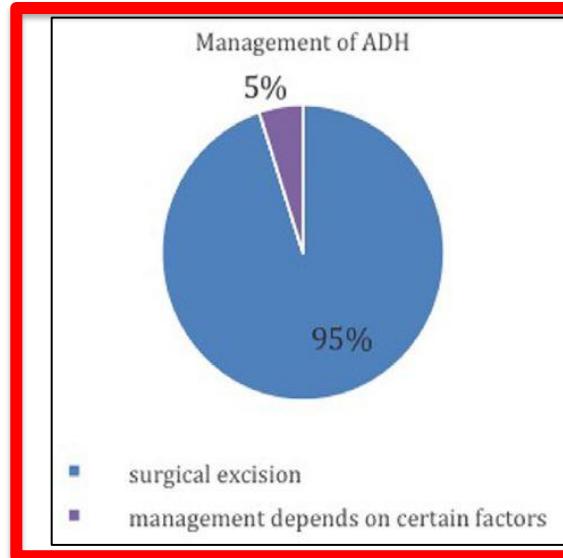
1) Name of institution (confidential)

2-8) When a core biopsy reveals , what is your typical management recommendation?

- a) Surgical excision
- b) Short-interval follow-up
- c) Return to screening
- d) It depends on certain factors

ADH, ALH, LCIS, Papilloma with and without atypia,
FEA, Radial scar/Complex sclerosing lesion

9) Do your breast imaging colleagues at your institution typically give the same recommendations?








Yes or No

Memorial Sloan Kettering
Cancer Center™

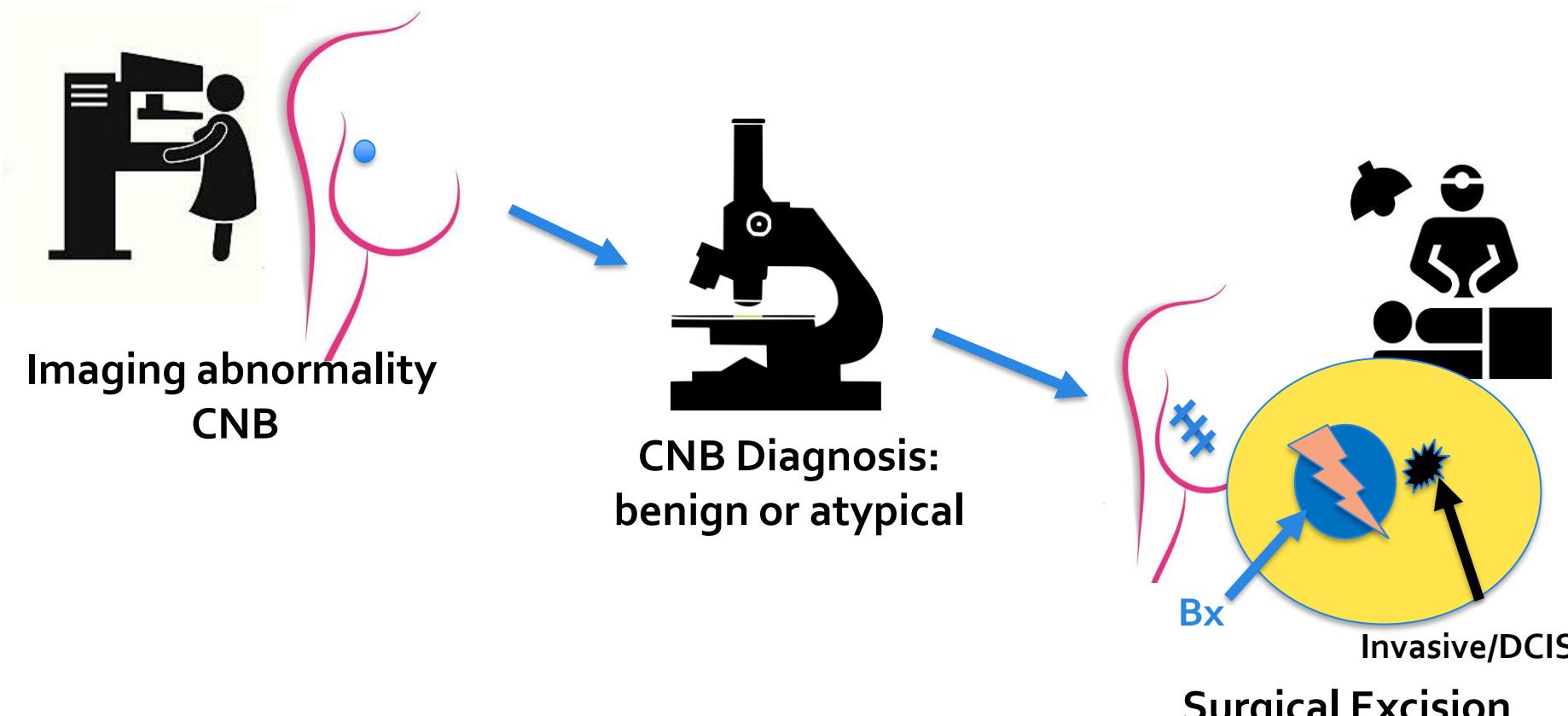
Current Problems in Diagnostic Radiology. 2019; 48: 462-466.

Surgical excision rates ranged between 39% to 95% between centers

90% (37/41) reported consistent recommendations with colleagues

7 institutions with multiple responses:

- 86% (6/7) conflict on at least 1 recommendation
- 43% (3/7) conflict on 3

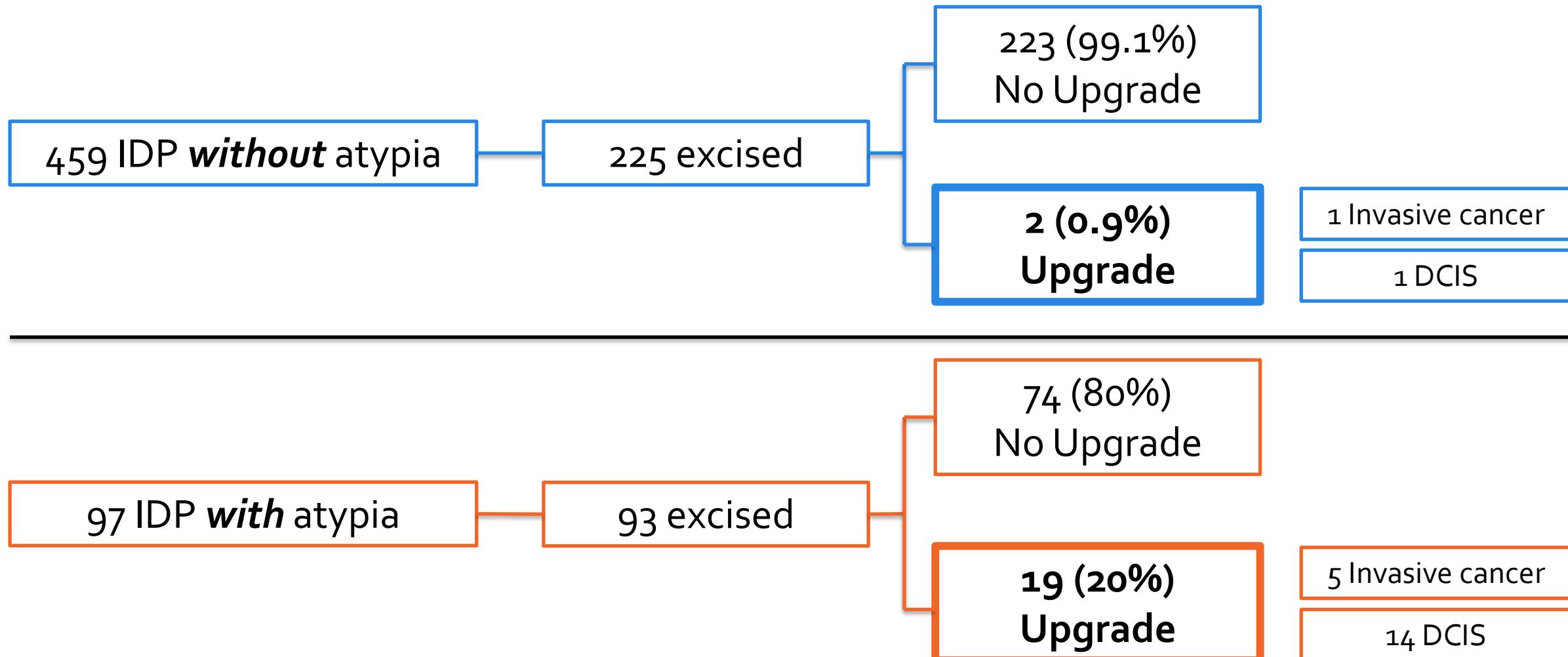


Is Excision Necessary?

- Papillomas
- Mucocele-like Lesions
- Radial Scar/Complex Sclerosing Lesion
- Lobular Neoplasia
- Flat Epithelial Atypia (FEA)
- Atypical Ductal Hyperplasia (ADH)

What is an Upgrade?

Surgical excision yields the biopsied lesion and invasive carcinoma and/or DCIS – **this is an upgrade**

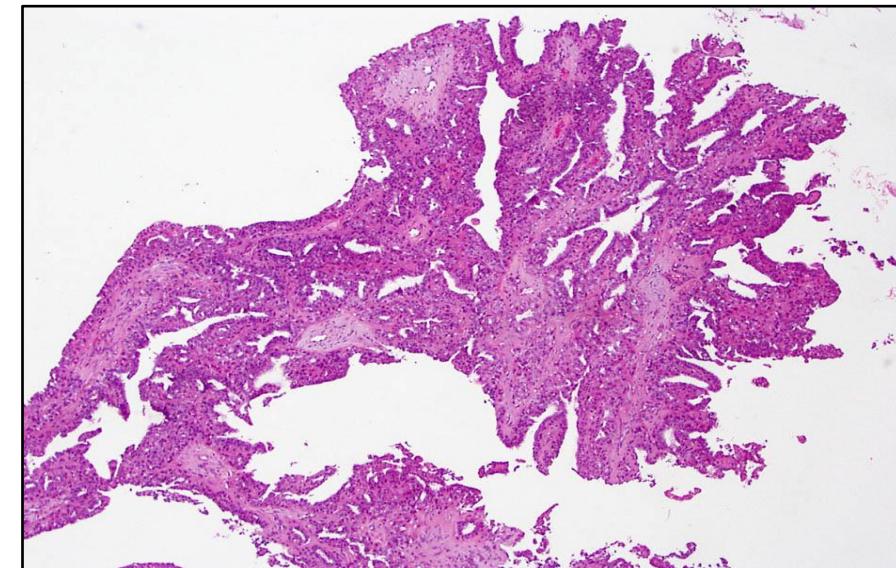
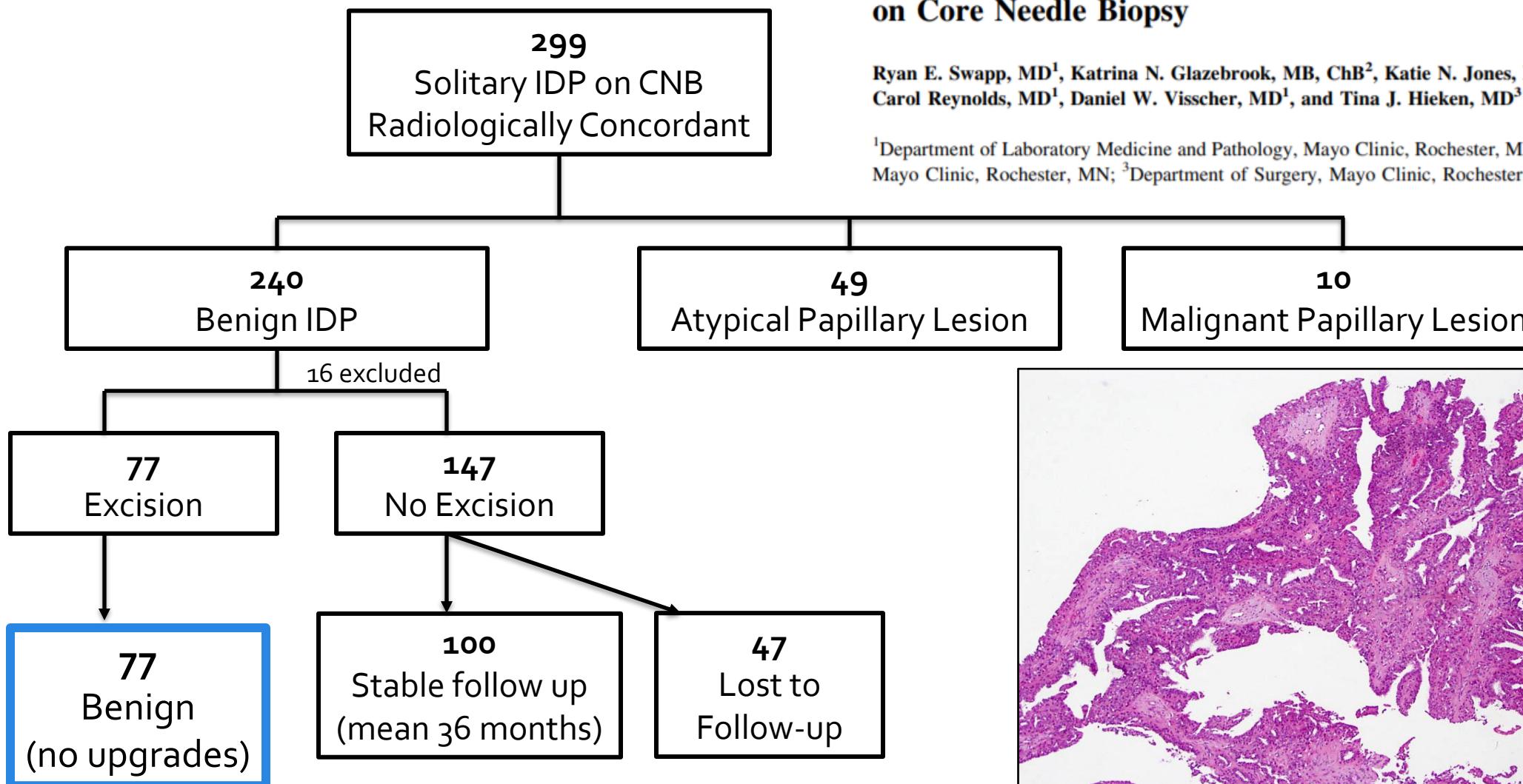

Memorial Sloan Kettering
Cancer Center™

Slide courtesy of Dr. M. Murray

Intraductal Papilloma

Upgrade of Intraductal Papilloma *with and without* Atypia

Intraductal Papilloma (IDP) without Atypia



- 1.5 – 2x relative risk
- ~5-7% lifetime risk
- Risk similar to that for moderate or florid UDH

Management of Benign Intraductal Solitary Papilloma Diagnosed on Core Needle Biopsy

Ryan E. Swapp, MD¹, Katrina N. Glazebrook, MB, ChB², Katie N. Jones, MD², Hannah M. Brandts, MD², Carol Reynolds, MD¹, Daniel W. Visscher, MD¹, and Tina J. Hieken, MD³

¹Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; ²Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN; ³Department of Surgery, Mayo Clinic, Rochester, MN

Management of Benign Intraductal Solitary Papilloma Diagnosed on Core Needle Biopsy

Ryan E. Swapp, MD¹, Katrina N. Glazebrook, MB, ChB², Katie N. Jones, MD², Hannah M. Brandts, MD², Carol Reynolds, MD¹, Daniel W. Visscher, MD¹, and Tina J. Hieken, MD³

¹Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; ²Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN; ³Department of Surgery, Mayo Clinic, Rochester, MN

299
Solitary IDP on CNB
Radiologically Concordant

49
Atypical Papillary Lesion

10
Malignant Papillary Lesion

14 (24%) were originally diagnosed as benign

13 reclassified as atypical

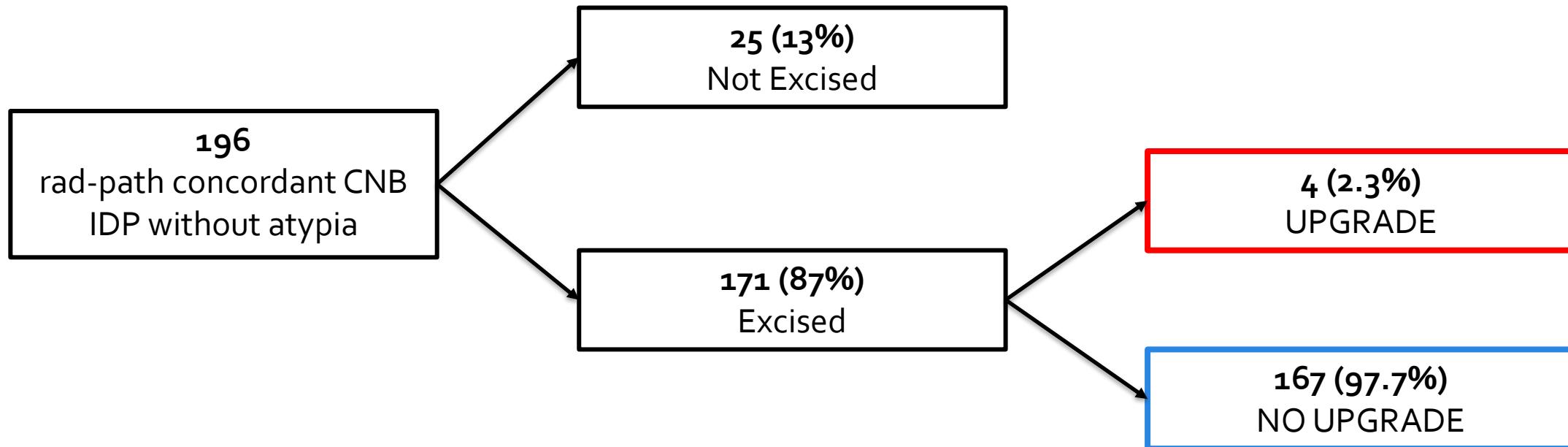
7 not excised → all stable clinically/radiologically (mean 54.9 months)

6 excised → 2 malignant (DCIS), 2 atypical, 2 benign

1 reclassified as malignant → encapsulated papillary carcinoma on excision

Upgrade Rates of Papillomas Without Atypia

Study	Number Excised	# Carcinoma at excision			Predictors of upgrade
		Total	Invasive	DCIS	
Bennett (2010)	40	0	0	0	Not investigated
Chang (2011)	49	0	0	0	None
Swapp (2013)	77	0	0	0	Not investigated
Nakhlis (2015)	42	0	0	0	Clinical sx
Pareja (2016)	171	4 (2.3%)	2 (1.1%)	2 (1.1%)	Concurrent ipsilateral carcinoma
Hong (2016)	234	14 (6%)	NS	NS	Age >54 y, size >10 mm
Kim (2016)	137	4 (2.9%)	1 (0.7%)	3 (2.1%)	None
Han (2018)	383	3 (0.8%)	0	3 (0.8%)	Clinical sx, concurrent contralateral carcinoma, multifocal, BIRADS \geq 4B
Ahn (2018)	250	17 (6.8%)	6 (2.4%)	11 (4.4%)	Clinical sx, size >15 mm, peripheral location, BIRADS \geq 4B
Grimm (2018)	136	1 (0.7%)*	0	1 (0.7%)*	Not investigated
Zaleski (2018)	206	8 (3.8%)	0	8 (3.8%)	Not investigated
Genco (2020)	126	2 (1.6%)	0	2 (1.6%)	Size >10 mm
Moseley (2021)	96	3 (3.1%)	1 (1%)	2 (2%)	Personal hx of breast cancer, clinical symptoms, size >10 mm
Limberg (2021)	99	3 (3.3%)	0	3 (3.3%)	None
Nakhlis (2021)	85	0	0	0	Not investigated
Lee (2021)	465	13 (2.7%)	NS	NS	Age >60 y, clinical sx, size <10 mm


Upgrade Rates of Papillomas Without Atypia

Study	Number Excised	# Carcinoma at excision			Predictors of upgrade
		Total	Invasive	DCIS	
Bennett (2010)	40	0	0	0	Not investigated
Chang (2011)	49	0	0	0	None
Swapp (2013)	77	0	0	0	Not investigated
Nakhlis (2015)	42	0	0	0	Clinical sx
Pareja (2016)	171	4 (2.3%)	2 (1.1%)	2 (1.1%)	Concurrent ipsilateral carcinoma
Hong (2016)	234	14 (6%)	NS	NS	Age >54 y, size >10 mm
Kim (2016)	137	4 (2.9%)	1 (0.7%)	3 (2.1%)	None
Han (2018)	383	3 (0.8%)	0	3 (0.8%)	Clinical sx, concurrent contralateral carcinoma, multifocal, BIRADS \geq 4B
Ahn (2018)	250	17 (6.8%)	6 (2.4%)	11 (4.4%)	Clinical sx, size >15 mm, peripheral location, BIRADS \geq 4B
Grimm (2018)	136	1 (0.7%)*	0	1 (0.7%)*	Not investigated
Zaleski (2018)	206	8 (3.8%)	0	8 (3.8%)	Not investigated
Genco (2020)	126	2 (1.6%)	0	2 (1.6%)	Size >10 mm
Moseley (2021)	96	3 (3.1%)	1 (1%)	2 (2%)	Personal hx of breast cancer, clinical symptoms, size >10 mm
Limberg (2021)	99	3 (3.3%)	0	3 (3.3%)	None
Nakhlis (2021)	85	0	0	0	Not investigated
Lee (2021)	465	13 (2.7%)	NS	NS	Age >60 y, clinical sx, size <10 mm

Upgrade Rates of Papillomas Without Atypia

Study	Number Excised	# Carcinoma at excision			Predictors of upgrade
		Total	Invasive	DCIS	
Bennett (2010)	40	0	0	0	Not investigated
Chang (2011)	49	0	0	0	None
Swapp (2013)	77	0	0	0	Not investigated
Nakhlis (2015)	42	0	0	0	Clinical sx
Pareja (2016)	171	4 (2.3%)	2 (1.1%)	2 (1.1%)	Concurrent ipsilateral carcinoma
Hong (2016)	234	14 (6%)	NS	NS	Age >54 y, size >10 mm
Kim (2016)	137	4 (2.9%)	1 (0.7%)	3 (2.1%)	None
Han (2018)	383	3 (0.8%)	0	3 (0.8%)	Clinical sx, concurrent contralateral carcinoma, multifocal, BIRADS \geq 4B
Ahn (2018)	250	17 (6.8%)	6 (2.4%)	11 (4.4%)	Clinical sx, size >15 mm, peripheral location, BIRADS \geq 4B
Grimm (2018)	136	1 (0.7%)*	0	1 (0.7%)*	Not investigated
Zaleski (2018)	206	8 (3.8%)	0	8 (3.8%)	Not investigated
Genco (2020)	126	2 (1.6%)	0	2 (1.6%)	Size >10 mm
Moseley (2021)	96	3 (3.1%)	1 (1%)	2 (2%)	Personal hx of breast cancer, clinical symptoms, size >10 mm
Limberg (2021)	99	3 (3.3%)	0	3 (3.3%)	None
Nakhlis (2021)	85	0	0	0	Not investigated
Lee (2021)	465	13 (2.7%)	NS	NS	Age >60 y, clinical sx, size <10 mm

MSK Study: Breast Intraductal Papillomas without Atypia in Radiologic-Pathologic Concordant Core Needle Biopsies: Predictors of Upgrade to Carcinoma at Excision

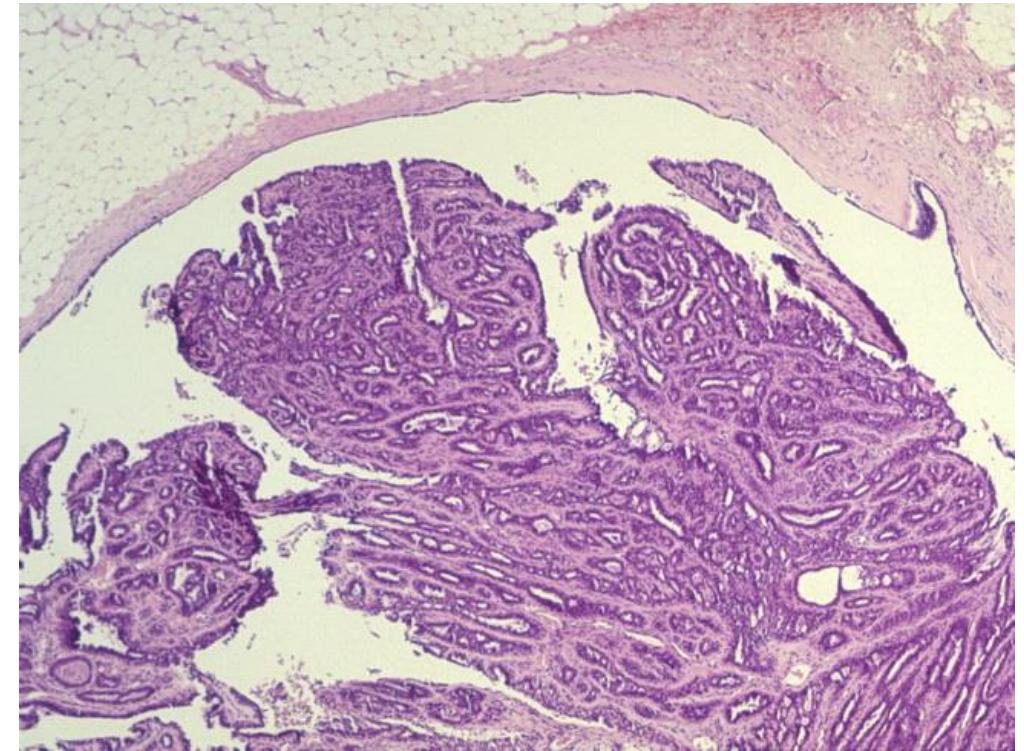
MSK Study:

2.3% upgrade rate to DCIS and/or Invasive Carcinoma

	Case 1	Case 2	Case 3	Case 4
Excision Findings	DCIS	DCIS	ILC, DCIS	ILC
Size of carcinoma	2 mm	2 mm	ILC: 1 mm DCIS: 1.5 mm	2 mm
Nuclear Grade	1	2-3	1	2
Residual IDP size	7 mm	0.7 mm	8 mm	4 mm
Distance of carcinoma from IDP	DCIS involves IDP	11 mm	ILC: 8 mm DCIS: >10 mm	15 mm

MSK Study:

2.3% upgrade rate to DCIS and/or Invasive Carcinoma


	Case 1	Case 2	Case 3	Case 4
Excision Findings	DCIS	DCIS	ILC, DCIS	ILC
Size of carcinoma	2 mm	2 mm	ILC: 1 mm DCIS: 1.5 mm	2 mm
Nuclear Grade	1	2-3	1	2
Residual IDP size	7 mm	0.7 mm	8 mm	4 mm
Distance of carcinoma from IDP	DCIS involves IDP	11 mm	ILC: 8 mm DCIS: >10 mm	15 mm
Type of Upgrade	True	Incidental	Incidental	Incidental

The Incidence of Adjacent Synchronous Invasive Carcinoma and/ or Ductal Carcinoma In Situ in Patients with Intraductal Papilloma without Atypia on Core Biopsy: Results from a Prospective Multi-Institutional Registry (TBCRC 034)

Faina Nakhlis, MD^{1,2}, Gabrielle M. Baker, MD³, Melissa Pilewskie, MD⁴, Rebecca Gelman, PhD⁵, Katherina Z. Calvillo, MD^{1,2}, Kandice Ludwig, MD⁶, Priscilla F. McAuliffe, MD, PhD⁷, Shawna Willey, MD⁸, Laura H. Rosenberger, MD⁹, Catherine Parker, MD¹⁰, Kristalyn Gallagher, DO¹¹, Lisa Jacobs, MD¹², Sheldon Feldman, MD¹³, Paulina Lange, BS², Stephen D. DeSantis, BS², Stuart J. Schnitt, MD², and Tari A. King, MD^{1,2}

¹Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA; ²Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA; ³Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; ⁴Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; ⁵Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA; ⁶Indiana University Cancer Center, Indianapolis, IN; ⁷UPMC Hillman Cancer Center, Pittsburgh, PA; ⁸Georgetown University Cancer Center, Washington, DC; ⁹Duke University Medical Center, Durham, NC; ¹⁰University of Alabama, Birmingham, AL; ¹¹University of North Carolina, Chapel Hill, NC; ¹²Johns Hopkins University, Baltimore, MD; ¹³Montefiore Medical Center, New York, NY

116 cases were included

Upgrades: 2 (1.7%)

Low grade DCIS, 0.3 cm

ADH bordering on low grade DCIS

Central Review: confirmed 85 cases

DCIS not confirmed

Upgrades: 0 (0%)*

*One excision did not have all slides for review

MSK Study: Cancer History in Patients with Upgrade at Excision

Personal History of Breast Cancer	Total	No Upgrade	Upgrade	p-value
Yes	58 (34.9%)	55 (34%)	3 (75%)	0.123
No	108 (65.1%)	107 (66%)	1 (25%)	
Concurrent				
Yes	28 (16.9%)	26 (16%)	2 (50%)	0.133
No	138 (83.1%)	136 (84%)	2 (50%)	
Concurrent and ipsilateral				
Yes	12 (7.2%)	10 (6.2%)	2 (50%)	0.027
No	154 (92.8%)	152 (93.8%)	2 (50%)	
Prior				
Yes	30 (18.1%)	29 (17.9%)	1 (25%)	0.553
No	136 (81.9%)	133 (82.1%)	3 (75%)	

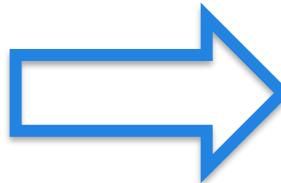
Adapted from Pareja et al. *Cancer*. 2016; 122 (18): 2819-2827.

Cancer History in Patients with Upgrade at Excision

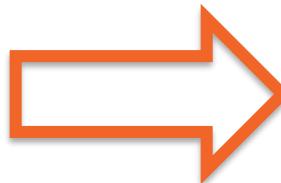
Personal History of Breast Cancer	Total	No upgrade	Upgrade	p-value
No	86	85 (98.8%)	1 (1.2%)	0.03
Yes	6	4 (66.7%)	2 (33.3%)	
Unknown	10	10 (100%)	0	

Adapted from Moseley et al. *Ann Surg Oncol* 2021; 28(3):1347-55.

It is reasonable to consider a patient's history of breast carcinoma in the presence of other worrisome symptoms or larger lesion size when evaluating the absolute need for surgical excision

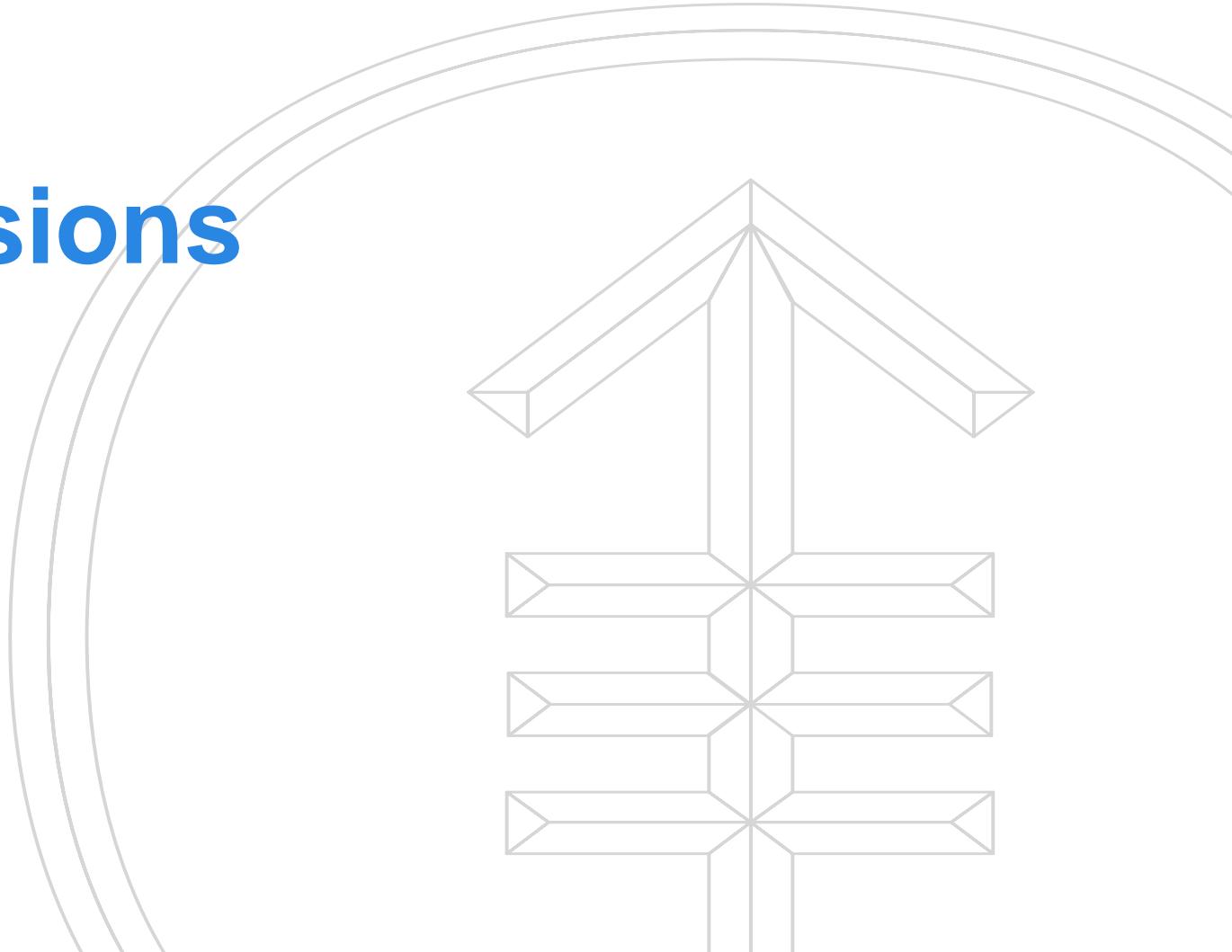

Upgrade Rate of Papilloma without Atypia after Observation

Study	Number Observed (follow up)	Upgrade after observation		
		Total	Invasive	DCIS
Bennett (2010)	75 (≥ 24 mo)	0	0	0
Swapp (2013)	100 (4.8-93.8 mo)	0	0	0
Ahn (2018)	177 (9-112 mo)	2 (1.1%)	0	2 (1.1%)
Grimm (2018)	200 (≥ 24 mo)	0	0	0
Limberg (2021)	76 (5-111 mo)	1 (1.3%)	0	1 (1.3%)
Lee (2021)	146 (≥ 24 mo)	0	0	0
Corbin (2022)	234 (24-140 mo)	0	0	0
Jatana (2022)	112 (≥ 23 mo)	2 (1.7%)	1 (0.8%)	1 (0.8%)

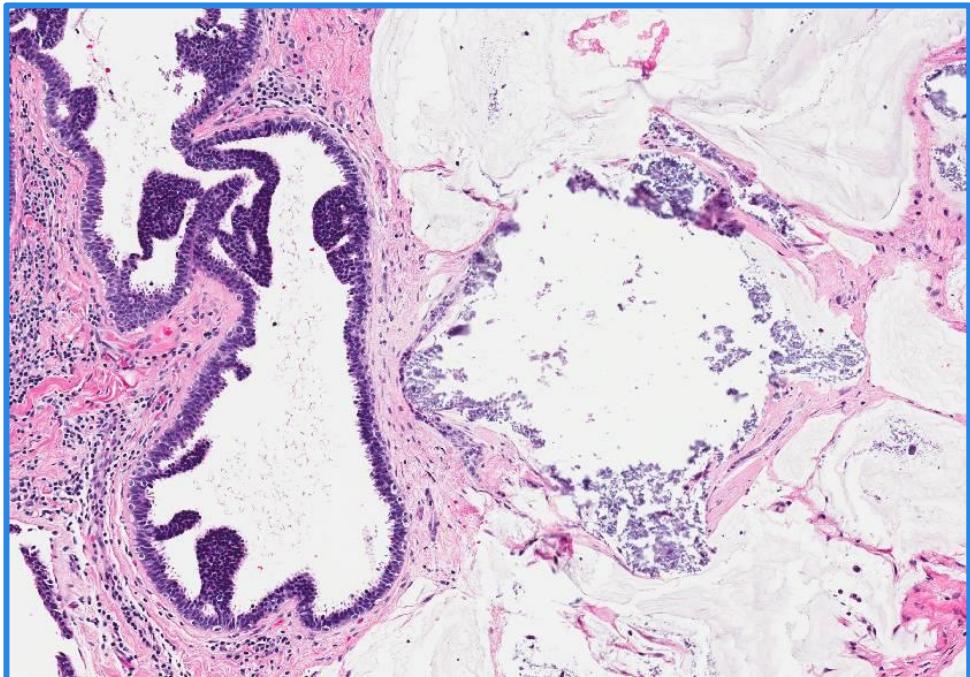

Management for Intraductal Papilloma on CNB

Papilloma without atypia
AND
Rad-path concordance

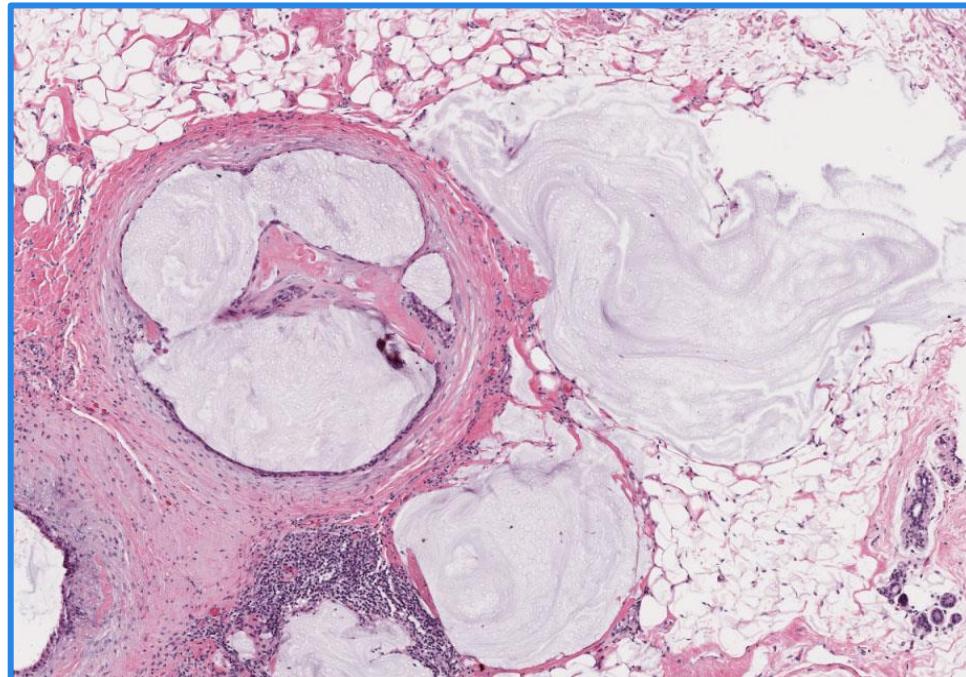
No Excision
Routine imaging


Papilloma with atypia
Papilloma without atypia
AND
Rad-path discordance

Surgical Excision



Mucocele-like Lesions



Mucocele-like Lesion (MLL)

- Rare: <1% of diagnoses by core needle biopsy
- Most commonly presents as mammographic lesion
 - Calcifications ± smoothly circumscribed mass
- ~1/3 associated with atypia

MLL with atypia

MLL without atypia

Upgrade Rates of Rad-Path Concordant CNB with MLL

Study	CNB with EXC	Upgrade rate
Sutton (2012)	38	13% (5/38)
Rakha (2013)	54	4% (2/54)
Edelweiss (2013) MSK STUDY	28	14% (4/28)
Ha (2015)	24	4% (1/24)
Gibreel (2016)	26	3.8% (1/26)*
Zhang (2017)	28	14% (4/28)
Moseley (2019)	28	3.5% (1/28)
Towne (2022)	39	15% (6/39)

* Case was rad-path discordant

Upgrade Rates of Rad-Path Concordant CNB with MLL

Study	CNB with EXC	Upgrade rate
Sutton (2012)	38	13% (5/38)
Rakha (2013)	54	4% (2/54)
Edelweiss (2013)	28	14% (4/28)
MSK STUDY		
Ha (2015)	24	4% (1/24)
Gibreel (2016)	26	3.8% (1/26)*
Zhang (2017)	28	14% (4/28)
Moseley (2019)	28	3.5% (1/28)
Towne (2022)	39	15% (6/39)
TOTAL	265	9% (24/265)

Study	CNB with EXC	Atypia		No Atypia		Upgrade rate
		Number of cases	Upgrade rate	Number of cases	Upgrade rate	
Sutton (2012)	38	16	31% (5/16)	22	0% (0/22)	13% (5/38)
Rakha (2013)	54	0	-	54	4% (2/54)	4% (2/54)
Edelweiss (2013) MSK STUDY	28	18	22% (4/18)	10	0% (0/10)	14% (4/28)
Ha (2015)	24	12	8% (1/12)	12	0% (0/12)	4% (1/24)
Gibreel (2016)	26	14	0% (0/14)	12	8% (1/12)*	3.8% (1/26)*
Zhang (2017)	28	9	33% (3/9)	19	5% (1/19)	14% (4/28)
Moseley (2019)	28	16	6% (1/16)	12	0% (0/12)	3.5% (1/28)
Towne (2022)	39	20	20% (4/20)	19	11% (2/19)	15% (6/39)

Study	CNB with EXC	Atypia		No Atypia		Upgrade rate
		Number of cases	Upgrade rate	Number of cases	Upgrade rate	
Sutton (2012)	38	16	31% (5/16)	22	0% (0/22)	13% (5/38)
Rakha (2013)	54	0	-	54	4% (2/54)	4% (2/54)
Edelweiss (2013) MSK STUDY	28	18	22% (4/18)	10	0% (0/10)	14% (4/28)
Ha (2015)	24	12	8% (1/12)	12	0% (0/12)	4% (1/24)
Gibreel (2016)	26	14	0% (0/14)	12	8% (1/12)*	3.8% (1/26)*
Zhang (2017)	28	9	33% (3/9)	19	5% (1/19)	14% (4/28)
Moseley (2019)	28	16	6% (1/16)	12	0% (0/12)	3.5% (1/28)
Towne (2022)	39	20	20% (4/20)	19	11% (2/19)	15% (6/39)

* Case was rad-path discordant

17% (18/105)

3% (5/159)

Study	CNB with EXC	Atypia		No Atypia		Upgrade rate
		Number of cases	Upgrade rate	Number of cases	Upgrade rate	
Sutton (2012)	38	16	31% (5/16)	22	0% (0/22)	13% (5/38)
Rakha (2013)	54	0	-	54	4% (2/54)	4% (2/54)
Edelweiss (2013) MSK STUDY	28	18	22% (4/18)	10	0% (0/10)	14% (4/28)
Ha (2015)	24	12	8% (1/12)	12	0% (0/12)	4% (1/24)
Gibreel (2016)	26	14	0% (0/14)	12	8% (1/12)*	3.8% (1/26)*
Zhang (2017)	28	9	33% (3/9)	19	5% (1/19)	14% (4/28)
Moseley (2019)	28	12	0% (0/12)	16	6% (1/16)	3.5% (1/28)
Towne (2022)	39	20	20% (4/20)	19	11% (2/19)	15% (6/39)

* Case was rad-path discordant

17% (18/105)

3% (5/159)

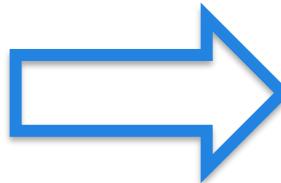
Study	CNB with EXC	Atypia		No Atypia		Upgrade rate
		Number of cases	Upgrade rate	Number of cases	Upgrade rate	
Sutton (2012)	38	16	31% (5/16)	22	0% (0/22)	13% (5/38)
Rakha (2013)	54	0	-	54	4% (2/54)	4% (2/54)
Edelweiss (2013) MSK STUDY	28	18	22% (4/18)	10	0% (0/10)	14% (4/28)
Ha (2015)	24	12	8% (1/12)	12	0% (0/12)	4% (1/24)
Gibreel (2016)	26	14	0% (0/14)	12	8% (1/12)*	3.8% (1/26)*
Zhang (2017)	28	9	33% (3/9)	19	5% (1/19)	14% (4/28)
Moseley (2019)	28	16	6% (1/16)	12	0% (0/12)	3.5% (1/28)
Towne (2022)	39	20	20% (4/20)	19	11% (2/19)	15% (6/39)

* Case was rad-path discordant

17% (18/105)

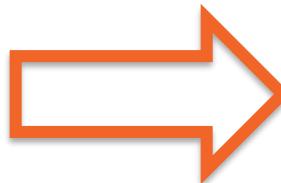
3% (5/159)

Study	CNB with EXC	Atypia		No Atypia		Upgrade rate
		Number of cases	Upgrade rate	Number of cases	Upgrade rate	
Sutton (2012)	38	16	31% (5/16)	22	0% (0/22)	13% (5/38)
Rakha (2013)	54	0	-	54	4% (2/54)	4% (2/54)
Edelweiss (2013) MSK STUDY	28	18	22% (4/18)	10	0% (0/10)	14% (4/28)
Ha (2015)	24	12	8% (1/12)	12	0% (0/12)	4% (1/24)
Gibreel (2016)	26	14	0% (0/14)	12	8% (1/12)*	3.8% (1/26)*
Zhang (2017)	28	9	33% (3/9)	19	5% (1/19)	14% (4/28)
Moseley (2019)	28	16	6% (1/16)	12	0% (0/12)	3.5% (1/28)
Towne (2022)	39	20	20% (4/20)	19	11% (2/19)	15% (6/39)


* Case was rad-path discordant

17% (18/105)

3% (5/159)


Management for Mucocele-like lesion on CNB

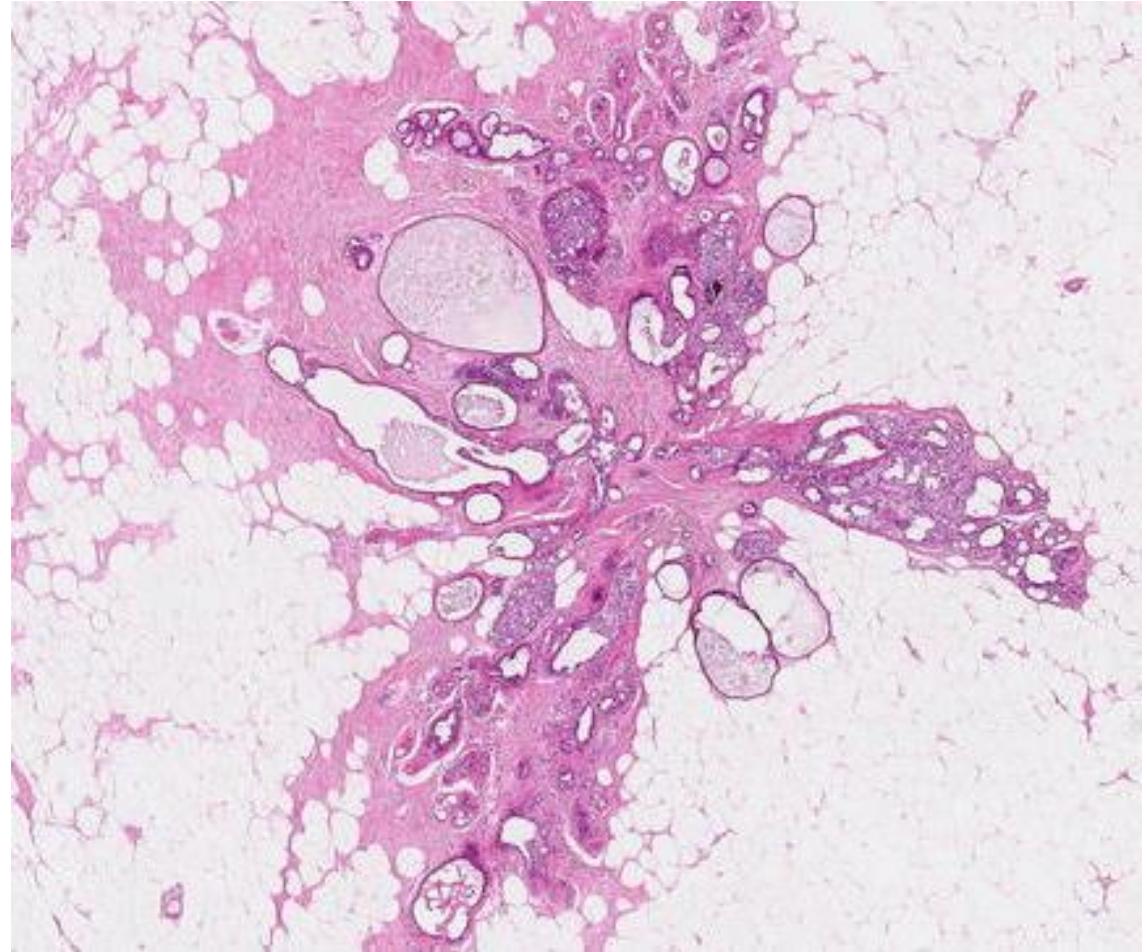
MLL without atypia
AND
Rad-path concordance

No Excision
Routine imaging

MLL with atypia
MLL without atypia
AND
Rad-path discordance

Surgical Excision

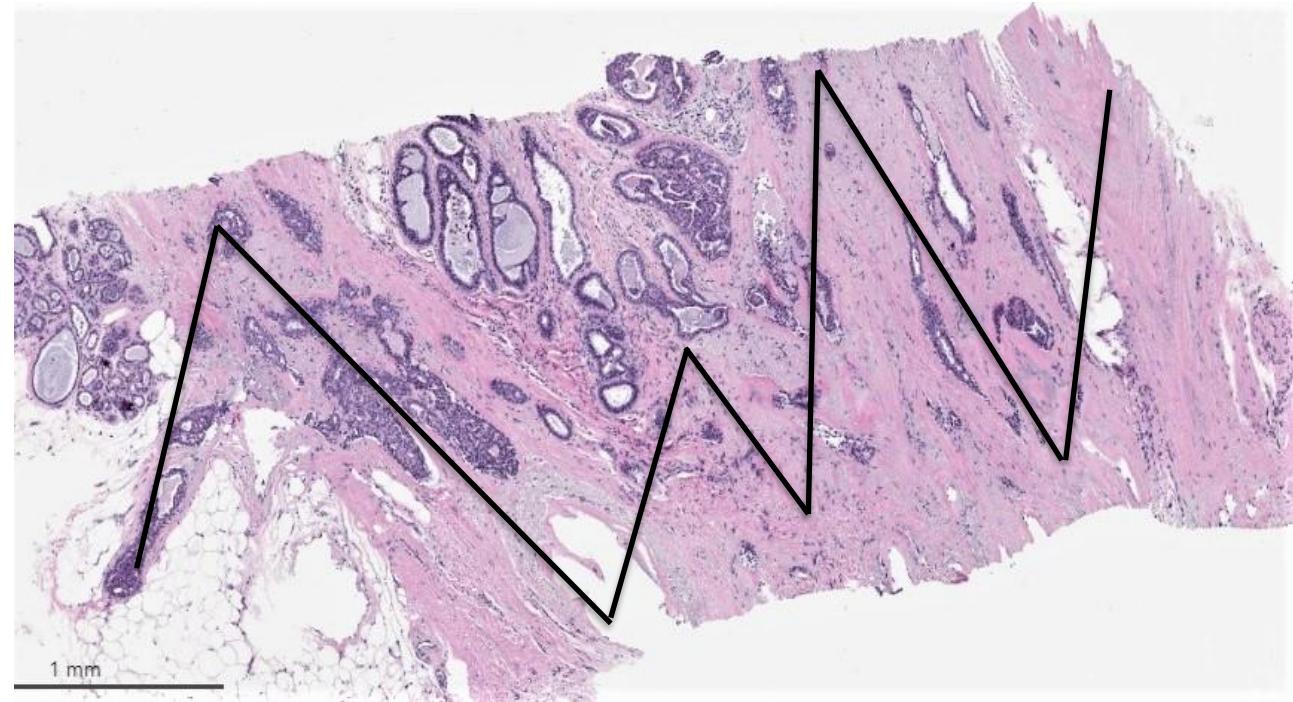
Radial Sclerosing Lesions (RSLs):


Radial Scar (RS)

Complex Sclerosing Lesion (CSL)

Definitions

- RS and CSL – spectrum of breast sclerosing lesions
 - ~2-3 fold relative risk
 - Lifetime risk of carcinoma ~6%



Radial Scar (RS)

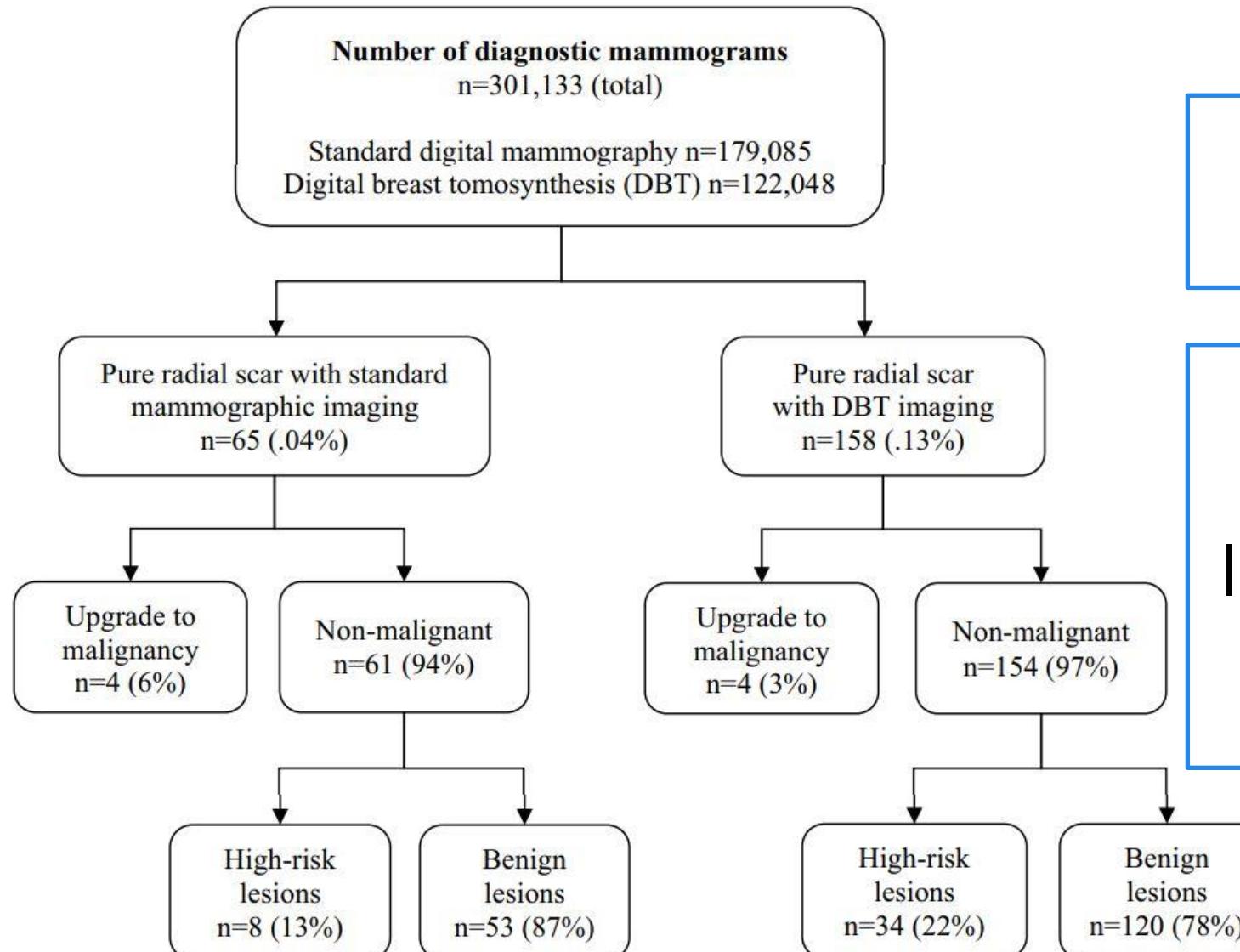
Central hyalinized nidus and radiating arms, forms irregular mass or architectural distortion on imaging

Complex Sclerosing Lesion (CSL)

Ill-defined/non-concentric lesions
Sometimes defined as RS >1 cm

Digital Breast Tomosynthesis

TABLE I: Comparison of 2D Digital Mammography (DM) and Digital Breast Tomosynthesis (DBT) Cases


Finding	2D DM Cases	DBT Cases	<i>p</i>
Patient or clinical characteristic			
Age (y), mean (range)	58 (30–95)	59 (26–86)	0.62
Race (white)	111/121 (91.7)	249/274 (90.9)	0.78
Breast density (heterogeneously dense or extremely dense)	63/121 (52.1)	147/274 (53.6)	0.77
Imaging feature			
Proportion of mammographic examinations with architectural distortion	121/166,661 (0.07)	274/202,438 (0.14)	<0.001
Architectural distortion detected on screening examination	54/121 (44.6)	180/274 (65.7)	<0.001
Architectural distortion evaluated by ultrasound	115/121 (95.0)	264/274 (96.4)	0.54
Proportion of examinations with architectural distortion given BI-RADS final assessment category of 4	100/121 (82.6)	265/274 (96.7)	<0.001
Proportion of examinations with architectural distortion given BI-RADS final assessment category of 5	21/121 (17.4)	9/274 (3.3)	<0.001

Note—Except where otherwise indicated, data are number of examinations/total examinations (%).

Memorial Sloan Ke
Cancer Center

Rate of radial scars by core biopsy and upgrading to malignancy or high-risk lesions before and after introduction of digital breast tomosynthesis

Increase in rate of RS diagnosed

Rates of upgrade to malignancy and high risk lesions were similar before and after DBT
(differences not statistically significant)

Pathologic Upgrade Rates of High-Risk Breast Lesions on Digital Two-Dimensional vs Tomosynthesis Mammography

High-risk breast lesion	DM (n = 475)		DBT (n = 425)		Total (n = 900)		p Value
	n	%	n	%	n	%	
Atypical ductal hyperplasia	197	41.5	140	32.9	337	37.4	<0.01
Flat epithelial atypia	81	17.1	62	14.6	143	15.9	0.31
Radial scar	46	9.7	65	15.3	111	12.3	0.01
Papilloma	22	4.6	54	12.7	76	8.4	<0.001
Papilloma with atypia	5	1.1	10	2.4	15	1.7	0.19*
Papilloma without atypia	17	3.6	44	10.4	61	6.8	<0.001
Atypical lobular hyperplasia	30	6.3	43	10.1	73	8.1	0.04
Biphasic neoplasm	39	8.2	22	5.2	61	6.8	0.07
Lobular carcinoma in situ	34	7.2	23	5.4	57	6.3	0.28
LCIS with pleomorphism	4	0.8	2	0.5	6	0.7	0.69*
LCIS without pleomorphism	30	6.3	21	4.9	51	5.7	0.37
Nonspecific atypia	26	5.5	16	3.8	42	4.7	0.22

*Calculated with Fisher exact test.

DBT, digital breast tomosynthesis; DM, digital two-dimensional mammography; LCIS, lobular carcinoma in situ.

No statistically significant differences in overall upgrade rates of high risk lesions on DM (11.4%, 54/475) vs DBT (11.3%, 48/425)

Upgrade Rates of Radial Sclerosing Lesions without Atypia

Study	Number Excised	Upgrades at Excision		
		Total	Invasive	DCIS
Resetkova (2011)	10	0	0	0
Donaldson (2016)	37	0	0	0
Leong (2016)	161	1 (0.6%)	0	1 (0.6%)
Nakhlis (2018)	10	0	0	0
Ferreira (2017)	89	12 (14%)	5 (6%)	7 (8%)
Ha (2018)	64	2 (3.1%)	0	1 (1.3%)
Quinn (2020)	77	7 (9%)	0	7 (9%)
Kraft (2021)	98	1 (1%)	0	1 (1%)
Yan (2021)	93	1 (1%)	1 (1%)	0
Grabenstetter (2024)	130	2 (1%)	2 (1%)	0

Meta-analysis of upgrade rates in 3163 radial scars excised after needle core biopsy diagnosis

- Systematic review of Pubmed, Cochrane and Embase databases
 - Full papers, published after 1998
 - Included at least 5 RS
 - Provided information on biopsy gauge and upgrade rates
 - No information on rad-path concordance
- Findings were grouped into categories based on biopsy type, needle gauge and presence of atypia
- 51 studies met criteria with data on 3163 RS excised
 - Overall upgrade rate (for RS with and without atypia) was 6.9% (217/3163)
 - 71 Invasive, 144 DCIS

Meta-analysis of upgrade rates in 2213 RS without atypia

	No. of studies	Excised RS	Upgrade to invasive cancer	Upgrade to DCIS	Upgrade rate*
RS diagnosed on 14G NCB	14	828	18	30	5%
RS diagnosed on a mix of 8-16G NCB	19	1263	10	29	2%
RS diagnosed on VAB 8-11G biopsies	5	122	0	2	1%

*Pooled estimates of upgrade (95% confidence interval)

Meta-analysis of upgrade rates in 2213 RS without atypia

	No. of studies	Excised RS	Upgrade to invasive cancer	Upgrade to DCIS	Upgrade rate*
RS diagnosed on 14G NCB	14	828	18	30	5%
RS diagnosed on a mix of 8-16G NCB	19	1263	10	29	2%
RS diagnosed on VAB 8-11G biopsies	5	122	0	2	1%

*Pooled estimates of upgrade (95% confidence interval)

Meta-analysis of upgrade rates in 296 RS with atypia

	No. of studies	Excised RS	Upgrade to invasive cancer	Upgrade to DCIS	Upgrade rate*
RS diagnosed on 14G NCB	7	114	5	22	28%
RS diagnosed on a mix of 8-16G NCB	7	171	7	18	11%
RS diagnosed on VAB 8-11G biopsies	1	11	Not specified	Not specified	18% (2/11)

*Pooled estimates of upgrade (95% confidence interval)

Memorial Sloan Kettering
Cancer Center™

Farshid & Buckley. *Breast Cancer Research and Treatment*. 2019; 174: 165-177

Upgrade Rates of Radial Sclerosing Lesions without Atypia

Study	Number Excised	Upgrades at Excision		
		Total	Invasive	DCIS
Resetkova (2011)	10	0	0	0
Donaldson (2016)	37	0	0	0
Leong (2016)	161	1 (0.6%)	0	1 (0.6%)
Nakhlis (2018)	10	0	0	0
Ferreira (2017)	89	12 (14%)	5 (6%)	7 (8%)
Ha (2018)	64	2 (3.1%)	0	1 (1.3%)
Quinn (2020)	77	7 (9%)	0	7 (9%)
Kraft (2021)	98	1 (1%)	0	1 (1%)
Yan (2021)	93	1 (1%)	1 (1%)	0
Grabenstetter (2024)	130	2 (1%)	2 (1%)	0

Upgrade Rates of Radial Sclerosing Lesions without Atypia

Study	Number Excised	Upgrades at Excision		
		Total	Invasive	DCIS
Resetkova (2011)	10	0	0	0
Donaldson (2016)	37	0	0	0
Leong (2016)	161	1 (0.6%)	0	1 (0.6%)
Nakhlis (2018)	10	0	0	0
Ferreira (2017)	89	12 (14%)	5 (6%)	7 (8%)
Ha (2018)	64	2 (3.1%)	0	1 (1.3%)
Quinn (2020)	77	7 (9%)	0	7 (9%)
Kraft (2021)	98	1 (1%)	0	1 (1%)
Yan (2021)	93	1 (1%)	1 (1%)	0
Grabenstetter (2024)	130	2 (1%)	2 (1%)	0

MSK study: Benign RSL and Upgrade

	Age	Clinical history	Imaging modality	Imaging finding (lesion diameter)	Needle gauge	Pathology on core biopsy	RSL: Incidental or Target	Imaging target removed by biopsy	Pathology on excision
Case 1	43	Concurrent contralateral ILC	MRI	NME (28 mm)	9G VAB	RSL, florid UDH, papillomatosis	Target	No	Microinvasive ILC
Case 2	69	BRCA2, family hx breast cancer	MRI	Mass (6 mm)	9G VAB	RSL, fibrocystic changes	Incidental	Yes	IMC, 2 mm; DCIS, 2 mm*

*Patient had subsequent mastectomy showing benign pathology only

Both upgrades are small invasive carcinomas not associated with the biopsy site and deemed incidental.

Upgrade Rates of RSLs without Atypia after Observation

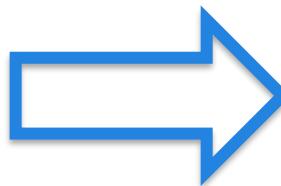
Study	Number Observed (median follow up)	Upgrades after Observation		
		Total	Invasive	DCIS
Resetkova (2011)	46 (30 months)	0	0	0
Nakhlis (2018)	62 (2.2 years)	3 (4.8%) *	1 (1.6%)	2 (3.2%)
Ferreira (2017)	26 (not specified)	0	0	0
Ha (2018)	16 (5 years)	0	0	0
Kraft (2021)	50 (16 months)	0	0	0
Yan (2021)	30 (3 years)	0	0	0
Grabenstetter (2024)	25 (31 months)	0	0	0

*All upgrades occurred at least 3 years and ≥ 3 cm away from initial biopsy

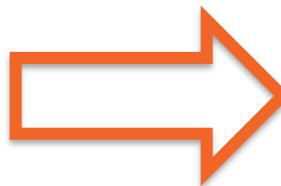
Radial scar with atypia

Study	Excised RS	Upgrade to Invasive Cancer	Upgrade to DCIS	Upgrade rate
Donaldson (2016)	22	2	5	33% (7/22)
Rakha (2019)	157	12	27	24.84% (39/157)
Quinn (2020)	9	1	2	33% (3/9)

Radial scar with atypia

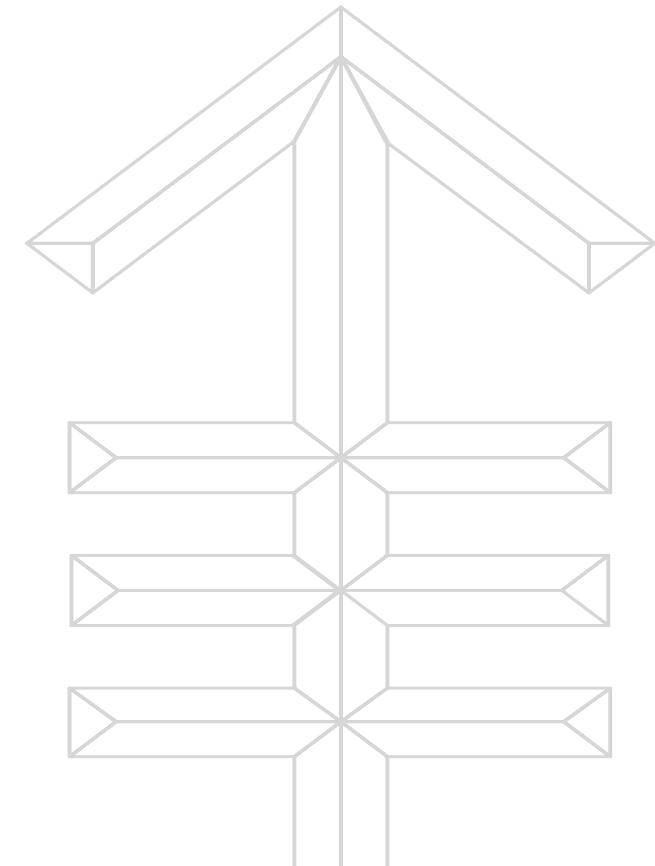

Study	Excised RS	Upgrade to Invasive Cancer	Upgrade to DCIS	Upgrade rate	RS without atypia
Donaldson (2016)	22	2	5	33% (7/22)	0% (3/27)
Rakha (2019)	157	12	27	24.84% (39/157)	N/A
Quinn (2020)	9	1	2	33% (3/9)	9% (7/77)

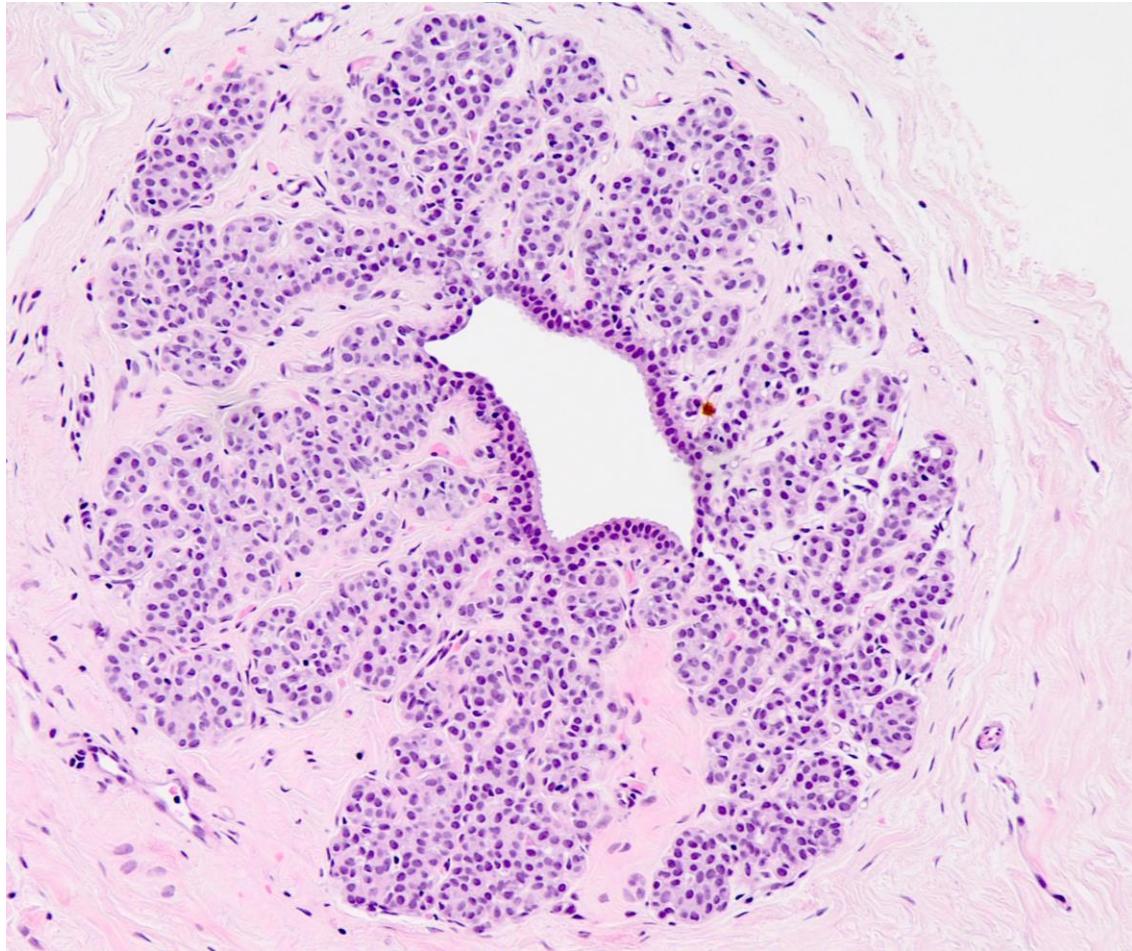
Upgrade rate significantly higher in atypical group


Management for Radial Sclerosing Lesions on CNB

RS/CSL without atypia
AND rad-path concordant

No Excision
Routine imaging


RS/CSL with atypia
RS/CSL without atypia
AND rad-path discordant


Surgical Excision

Classic Lobular Neoplasia

Atypical lobular hyperplasia (ALH) Lobular carcinoma in situ (LCIS), classic type

- Lobular neoplasia (LN)
 - Bilateral cancer risk
 - 2/3 ipsilateral, 1/3 contralateral
 - Cancers develop >10 years after diagnosis of LN
- ALH
 - Relative risk: 4-5x
 - 13-17% lifetime risk
- LCIS
 - Relative risk: 8-10x
 - 30% lifetime risk

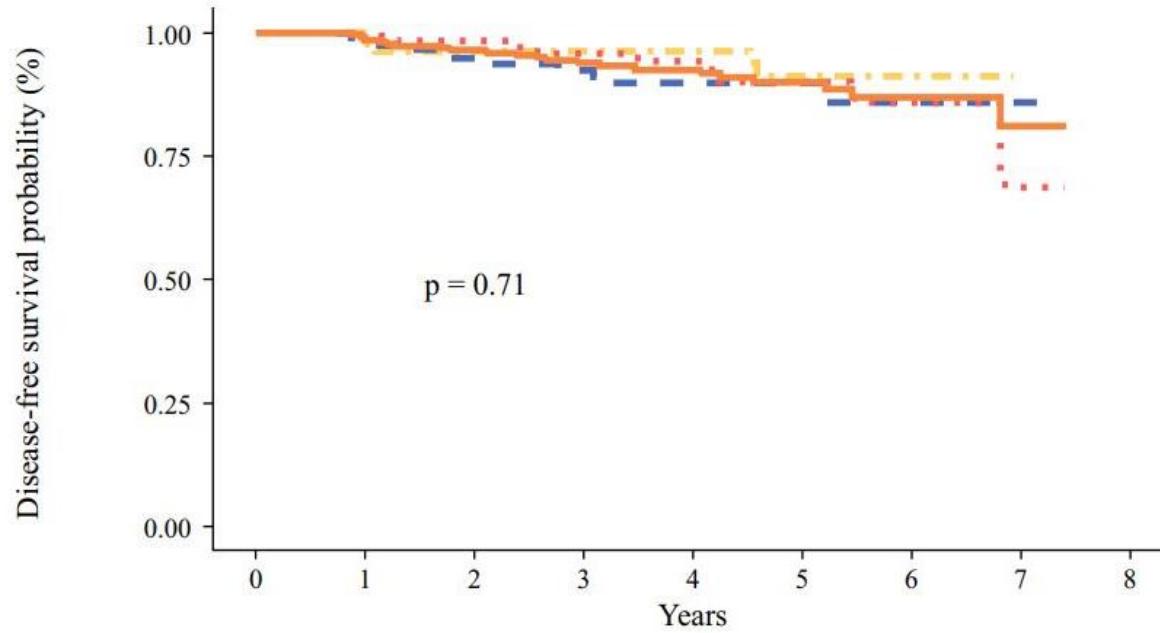
Classic lobular neoplasia on CNB: Upgrade rates

Study	Excised cases	Invasive Carcinoma	DCIS	Upgrade rate	Rad-path correlation
Shah-Khan (2012)	91	1	0	1%	Yes
Murray (2013) MSK STUDY	72	1	1	3%	Yes
Atkins (2013)	38	0	0	0%	Yes
Chaudhary (2013)	87	2	1	3.4%	Yes
Nakhlis (TBCRC 020) (2016)	74	0	1	1%	Yes
Genco (2020)	287	6	5	3.8%	Yes
Ibrahim (2012)	84	15	13	33%	No
Destounis (2012)	63	6	14	33%	No
Zhao (2012)*	237	4	7	4.6%	No

*Excluded all cases with imaging findings of a mass or any lesion other than calcifications

Classic lobular neoplasia on CNB: Upgrade rates

Study	Excised cases	Invasive Carcinoma	DCIS	Upgrade rate	Rad-path correlation
Shah-Khan (2012)	91	1	0	1%	Yes
Murray (2013) MSK STUDY	72	1	1	3%	Yes
Atkins (2013)	38	0	0	0%	Yes
Chaudhary (2013)	87	2	1	3.4%	Yes
Nakhlis (TBCRC 020) (2016)	74	0	1	1%	Yes
Genco (2020)	287	6	5	3.8%	Yes
Ibrahim (2012)	84	15	13	33%	No
Destounis (2012)	63	6	14	33%	No
Zhao (2012)*	237	4	7	4.6%	No


*Excluded all cases with imaging findings of a mass or any lesion other than calcifications

Classic lobular neoplasia on CNB: Upgrade rates

Study	Excised cases	Invasive Carcinoma	DCIS	Upgrade rate	Rad-path correlation	Discordant upgrades
Shah-Khan (2012)	91	1	0	1%	Yes	10% (1/10)
Murray (2013) MSK STUDY	72	1	1	3%	Yes	38% (3/8)
Atkins (2013)	38	0	0	0%	Yes	29% (2/7)
Chaudhary (2013)	87	2	1	3.4%	Yes	100% (1/1)
Nakhlis (TBCRC 020) (2016)	74	0	1	1%	Yes	-
Genco (2020)	287	6	5	3.8%	Yes	-
Ibrahim (2012)	84	15	13	33%	No	
Destounis (2012)	63	6	14	33%	No	
Zhao (2012)*	237	4	7	4.6%	No	

Routine excision of ALH/classic LCIS is not required if radiologically-pathologically concordant

Comparison of outcomes for classic-type LCIS managed with surgical excision after core biopsy versus observation

	Number at risk								
Concordant LCIS excision	36	25	21	20	20	16	9	1	0
Observation	142	130	93	68	47	24	14	5	0
Excision	134	117	93	72	51	32	16	4	0
All	312	272	207	160	118	72	39	10	0

Strata Concordant LCIS excision Observation Excision All

312 women with CNB dx
classic LCIS (1/2013 – 4/2020)

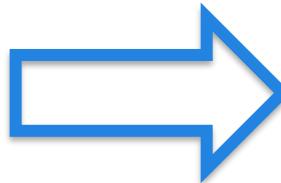
170 Excision

142 Observation

Developed carcinoma

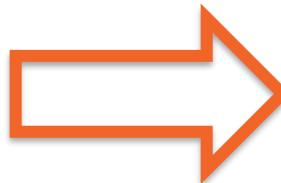
11 (6.5%)
[4 ipsilateral/same quadrant]

11 (7.7%)
[5 ipsilateral/same quadrant]


Estimated 5-year rates of cancer development:

- Excision group: 9.9%
- Observation group: 10.3%

Median follow up of 3.1 years, DFS did not significantly differ by management strategy

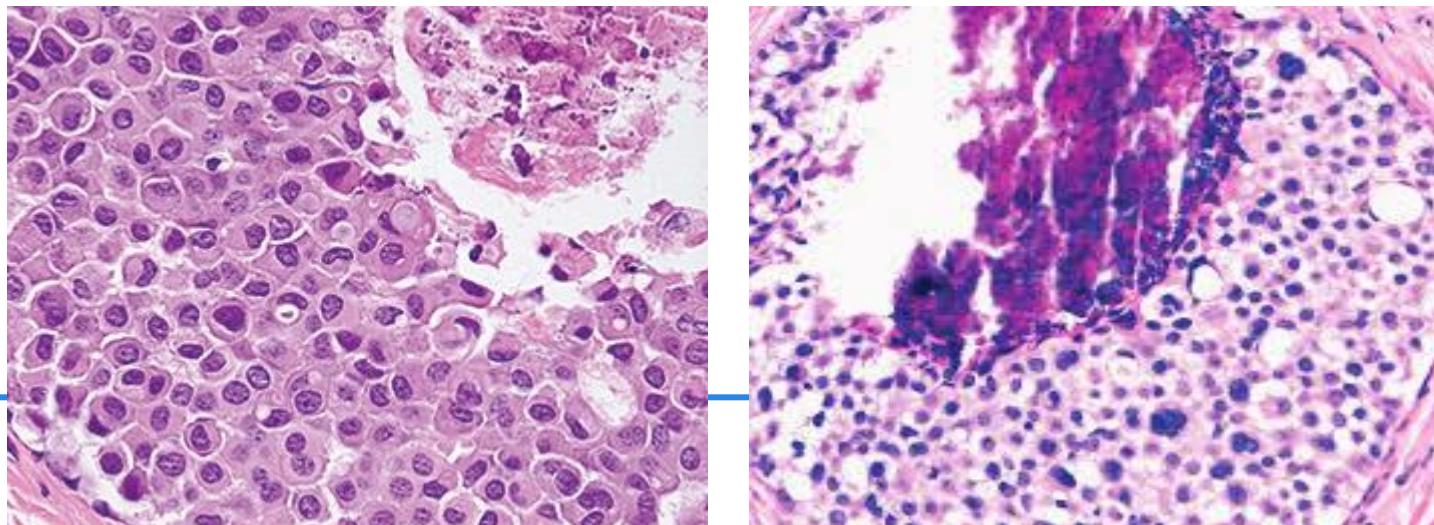
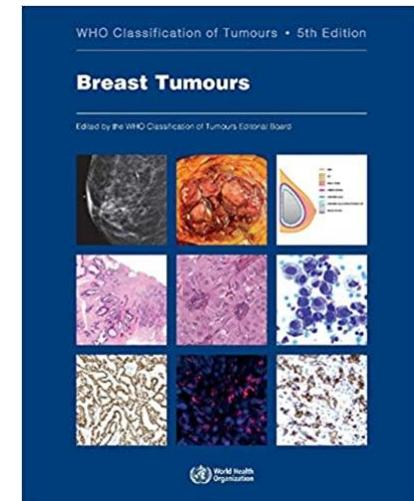

Management for Classic Lobular Neoplasia on CNB

**Classic LCIS & ALH
AND
Rad-path concordance**

No Excision
Routine imaging
+/- Chemoprevention

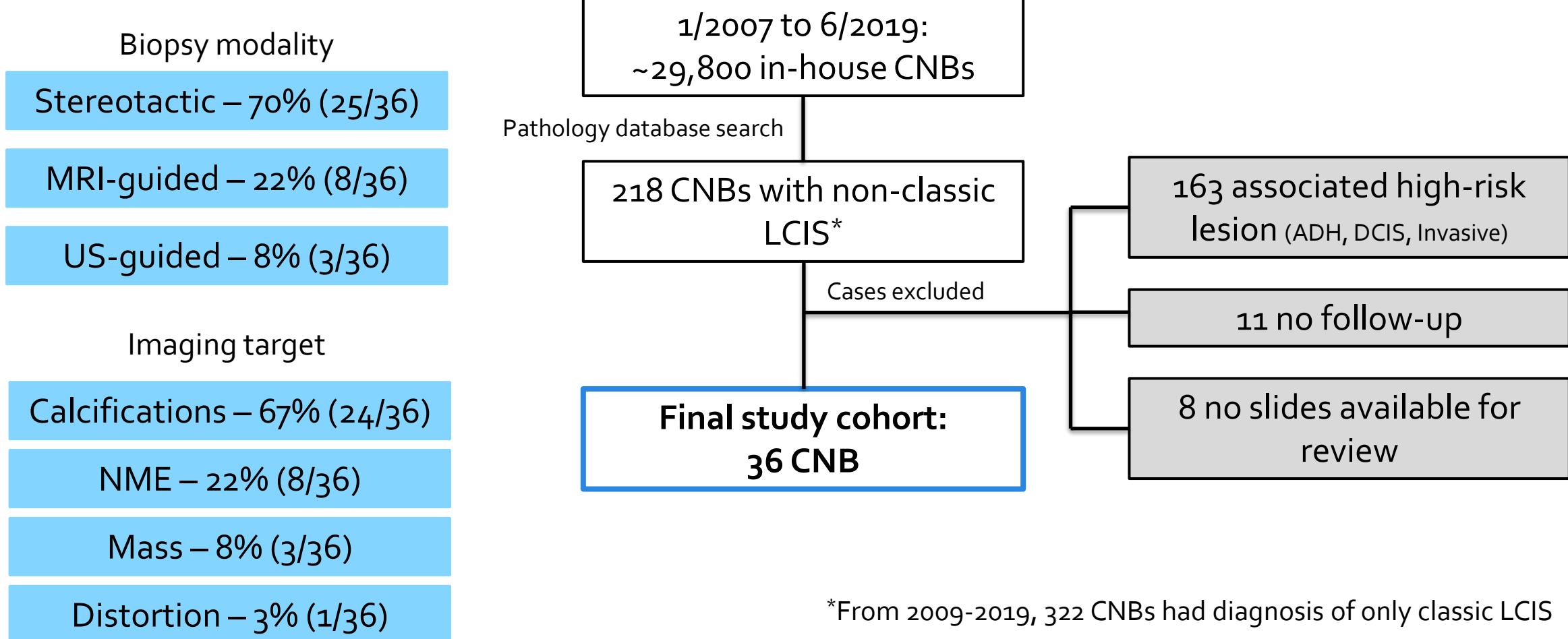
**Classic LCIS & ALH
AND
Rad-path discordance**

Surgical Excision

Non-classic LCIS:
Pleomorphic and Florid

Pleomorphic LCIS (PLCIS) Florid LCIS (FLCIS)


- Variant forms of LCIS recently defined by the WHO
 - Pleomorphic
 - Florid
- Have morphologic and molecular features not present in classic LCIS
- Natural history is unknown
 - Likelihood of association with (micro)invasion higher than classic type

Upgrade Rate of Non-classic LCIS

Study	Excised Cases	Upgrades at Excision		
		Total	Invasive	DCIS
Carder (2010)	10	3 (30%)	3 (30%)	0
Flanagan (2015)	23	11 (47.8%)	7 (30.4%)	4 (17.4%)
Guo (2018)	25	16 (64%)	16 (64%)	0
Fasola (2018)	20	6 (30%)	4 (20%)	2 (10%)
Desai (2018)	15	2 (20%)	3 (20%)	0
Nakhlis (2019)	76	27 (35%)	17 (22%)	10 (13%)
Shamir (2019)	14	5 (36%)	4 (29%)	1 (7%)
Foschini (2019)	70	31 (44.3%)	28 (40%)	3 (4.3%)
Singh (2020)	19	6 (31.5%)	5 (26.3%)	1 (5.2%)
Kuba (2021)	32	6 (19%)	6 (19%)	0

MSK Study: Morphologic subtypes of LCIS diagnosed on CNB: Clinicopathologic features and findings at follow-up excision

Final study cohort:
36 CNB

Morphologic re-review

PLCIS
8 (22%)

Necrosis

5

2
5 mm, 1 mi

No Necrosis

3

No
upgrades

LCIS-PF
4 (11%)

No
upgrades

FLCIS
24 (67%)

Necrosis

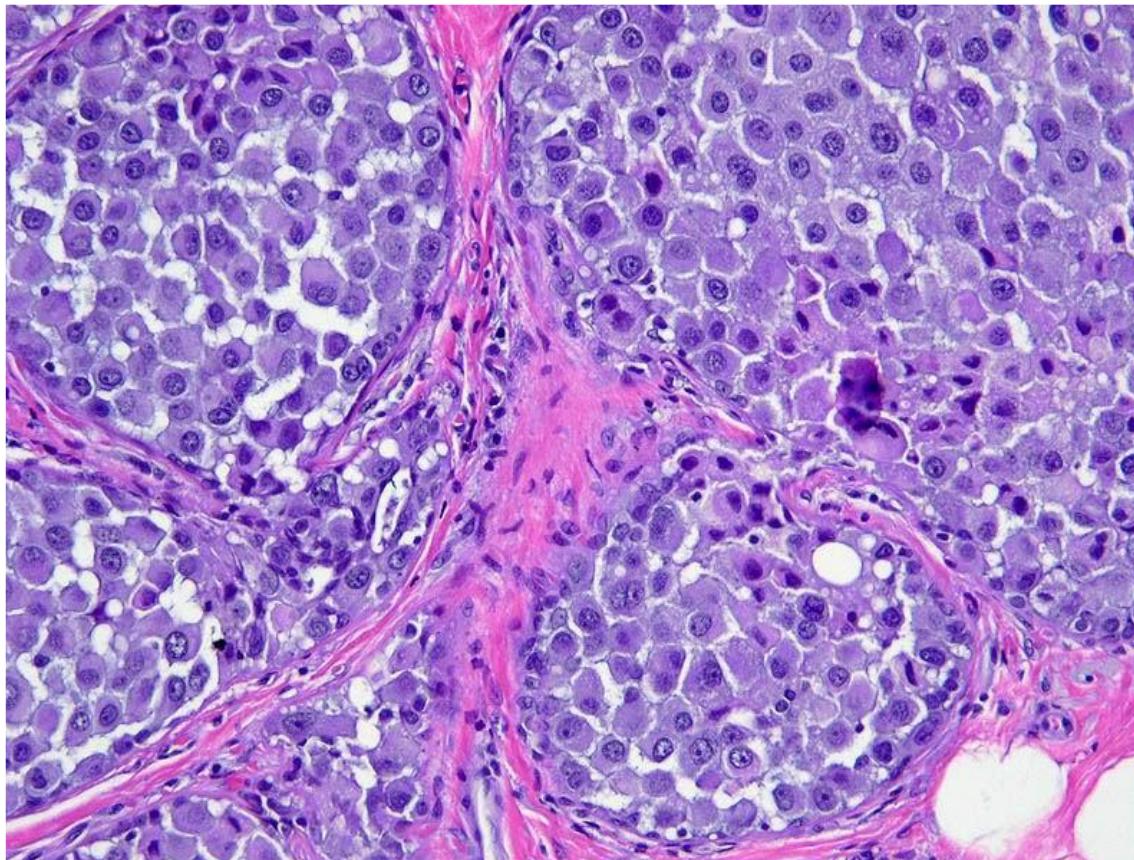
17

4
4 mm, 3 mi

No Necrosis

7

No
upgrades

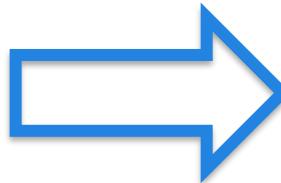

Total upgrade rate: 19% (6/32)

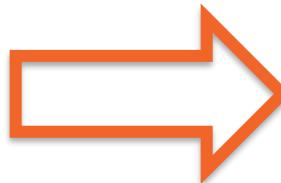
Memorial Sloan Kettering
Cancer Center™

MSK Study: Features of upgraded cases

Radiologic target in all cases was calcifications

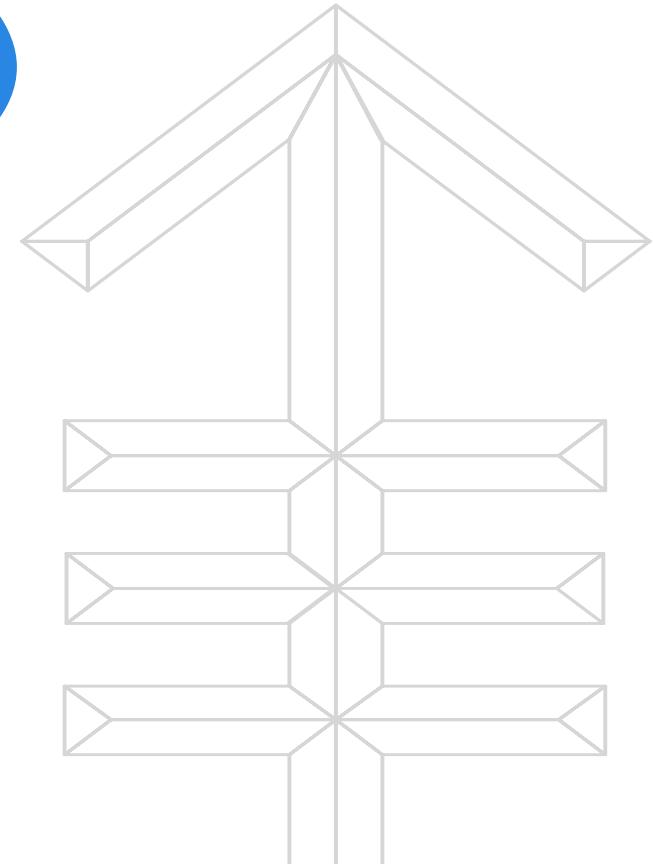
Presence of necrosis showed positive trend ($p=0.062$)


Extensive PLCIS or FLCIS on excision (mean size 3.2 cm v 0.9 cm) ($p=0.001$)

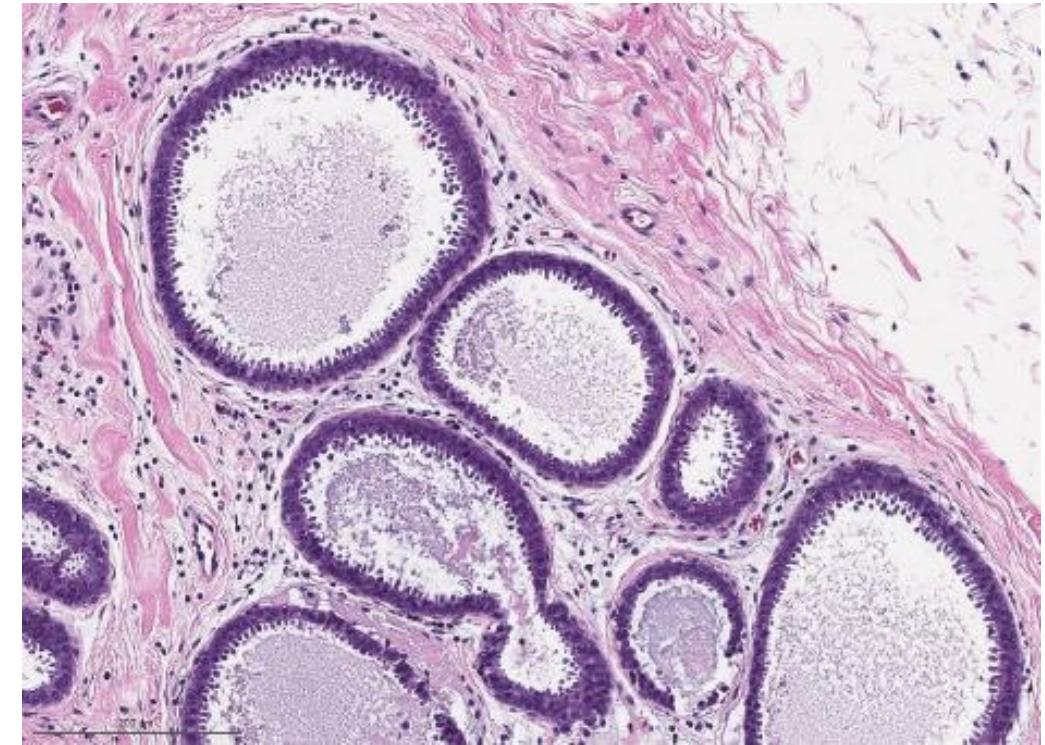

Management for Lobular Neoplasia on CNB

**Classic LCIS & ALH
AND
Rad-path concordance**

**No Excision
Routine imaging
+/- Chemoprevention**


Non-classic LCIS

Surgical Excision



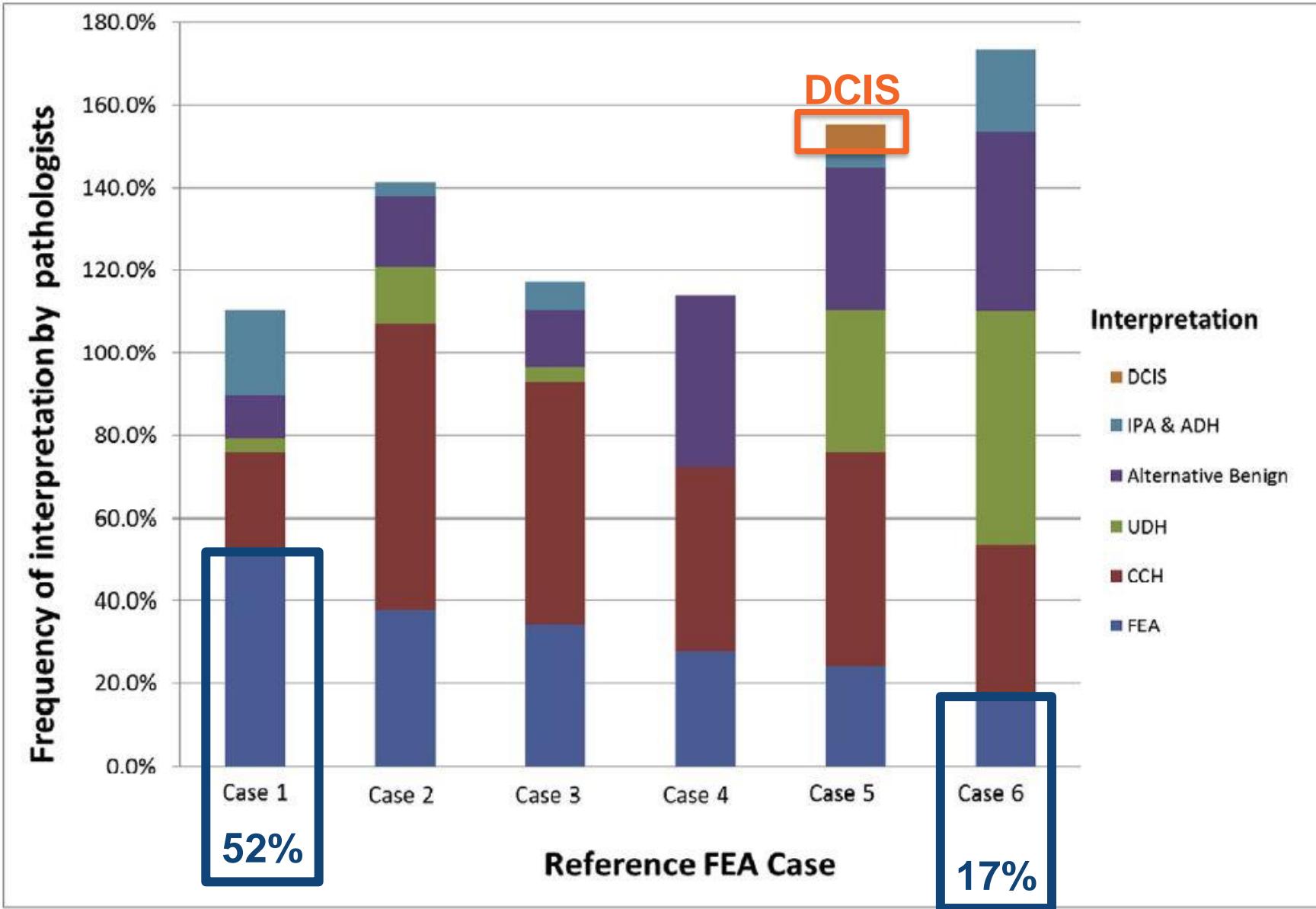
Flat Epithelial Atypia (FEA)

Flat Epithelial Atypia (FEA)

- Increase breast cancer risk by ~1.5x
- 5-7% lifetime risk of developing invasive cancer
 - Risk similar to UDH
- Need for routine excision remains uncertain
 - Limitations of study design
 - Wide variation in reported upgrade rate
- Radiologic pathologic correlation is recommended for determining further management

Upgrade Rate of FEA in Selected Series

Study	Number excised	Rad-path correlation	Upgrades at excision			Recommend excision
			Total	Invasive	DCIS	
Kunju & Kleer (2007)	12	No	3 (25%)	1 (8.3%)	1 (8.3%)	Yes
Martel (2007)	19	No	7 (36%)	7 (36%)	0	No
Piubello (2009)	20	Yes	0	0	0	No
Lavoue (2011)	60	No	8 (13%)	2 (3.3%)	6 (10%)	Yes
Uzoaru (2012)	95	No	3 (3%)	2 (2%)	1 (1%)	No
Dialani (2014)	29	Yes	1 (3.4%)	0	1 (3.4%)	No
Calhoun (2015)	73	Yes	5 (7%)	2 (3%)	3 (4%)	No
Lamb (2017)	208	Yes	5 (2.4%)	0	5 (2.4%)	No
McCroskey (2018)	43	Yes	1 (2%)	1 (2%)	0	No
Ouldamer (2018)	20	Yes	3 (15%)	1 (5%)	2 (10%)	No
Hugar (2019)	111	Yes	1 (0.9%)	1 (0.9%)	0	No
Grabenstetter (2020)	40	Yes	2 (5%)	2 (5%)	0	No
Miller-Ocuin (2020)	33	Yes	2 (6%)	1 (3%)	1 (3%)	No
Liu (2020)	116	Yes	1 (0.8%)	0	1 (0.8%)	No

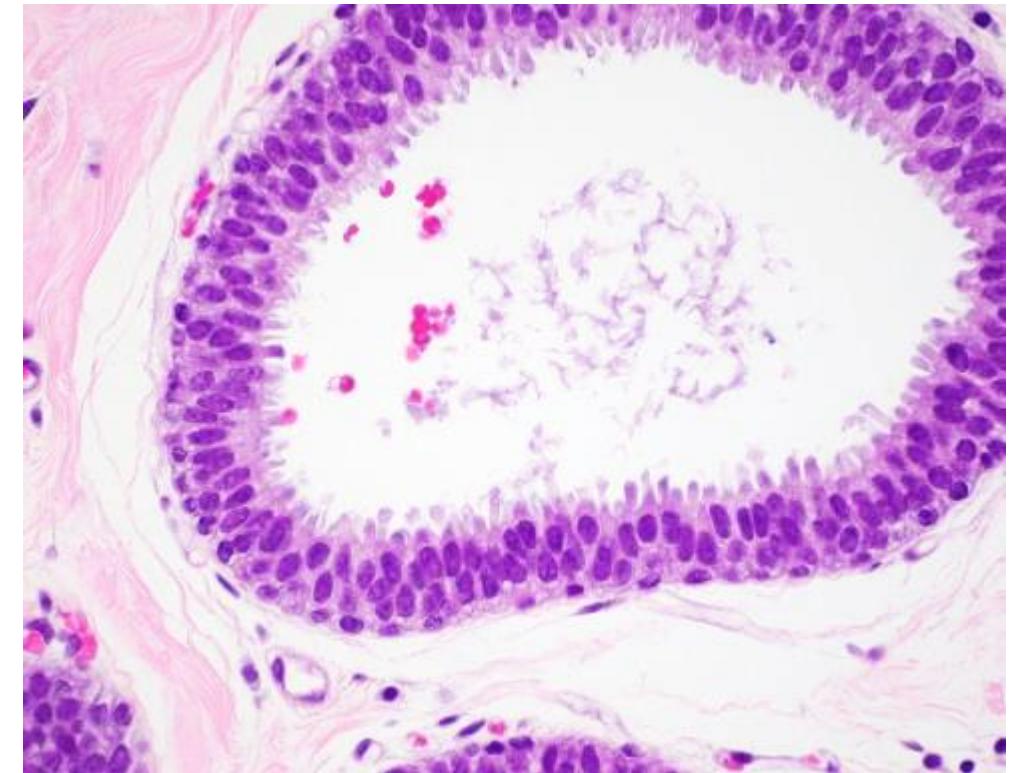

Upgrade Rate of FEA in Selected Series

Study	Number excised	Rad-path correlation	Upgrades at excision			Recommend excision
			Total	Invasive	DCIS	
Kunju & Kleer (2007)	12	No	3 (25%)	1 (8.3%)	1 (8.3%)	Yes
Martel (2007)	19	No	7 (36%)	7 (36%)	0	No
Piubello (2009)	20	Yes	0	0	0	No
Lavoue (2011)	60	No	8 (13%)	2 (3.3%)	6 (10%)	Yes
Uzoaru (2012)	95	No	3 (3%)	2 (2%)	1 (1%)	No
Dialani (2014)	29	Yes	1 (3.4%)	0	1 (3.4%)	No
Calhoun (2015)	73	Yes	5 (7%)	2 (3%)	3 (4%)	No
Lamb (2017)	208	Yes	5 (2.4%)	0	5 (2.4%)	No
McCroskey (2018)	43	Yes	1 (2%)	1 (2%)	0	No
Ouldamer (2018)	20	Yes	3 (15%)	1 (5%)	2 (10%)	No
Hugar (2019)	111	Yes	1 (0.9%)	1 (0.9%)	0	No
Grabenstetter (2020)	40	Yes	2 (5%)	2 (5%)	0	No
Miller-Ocuin (2020)	33	Yes	2 (6%)	1 (3%)	1 (3%)	No
Liu (2020)	116	Yes	1 (0.8%)	0	1 (0.8%)	No

Upgrade Rate of FEA in Selected Series

Study	Number excised	Rad-path correlation	Upgrades at excision			Recommend excision
			Total	Invasive	DCIS	
Kunju & Kleer (2007)	12	No	3 (25%)	1 (8.3%)	1 (8.3%)	Yes
Martel (2007)	19	No	7 (36%)	7 (36%)	0	No
Piubello (2009)	20	Yes	0	0	0	No
Lavoue (2011)	60	No	8 (13%)	2 (3.3%)	6 (10%)	Yes
Uzoaru (2012)	95	No	3 (3%)	2 (2%)	1 (1%)	No
Dialani (2014)	29	Yes	1 (3.4%)	0	1 (3.4%)	No
Calhoun (2015)	73	Yes	5 (7%)	2 (3%)	3 (4%)	No
Lamb (2017)	208	Yes	5 (2.4%)	0	5 (2.4%)	No
McCroskey (2018)	43	Yes	1 (2%)	1 (2%)	0	No
Ouldamer (2018)	20	Yes	3 (15%)	1 (5%)	2 (10%)	No
Hugar (2019)	111	Yes	1 (0.9%)	1 (0.9%)	0	No
Grabenstetter (2020)	40	Yes	2 (5%)	2 (5%)	0	No
Miller-Ocuin (2020)	33	Yes	2 (6%)	1 (3%)	1 (3%)	No
Liu (2020)	116	Yes	1 (0.8%)	0	1 (0.8%)	No

Variability in Diagnosis of FEA


~15,700 CNBs between 1/2012 – 7/2018

106 CNBs with FEA (0.7%)

52 CNBs
Excluded

40
prior/concurrent
Invasive/DCIS

12
no F/U
excision

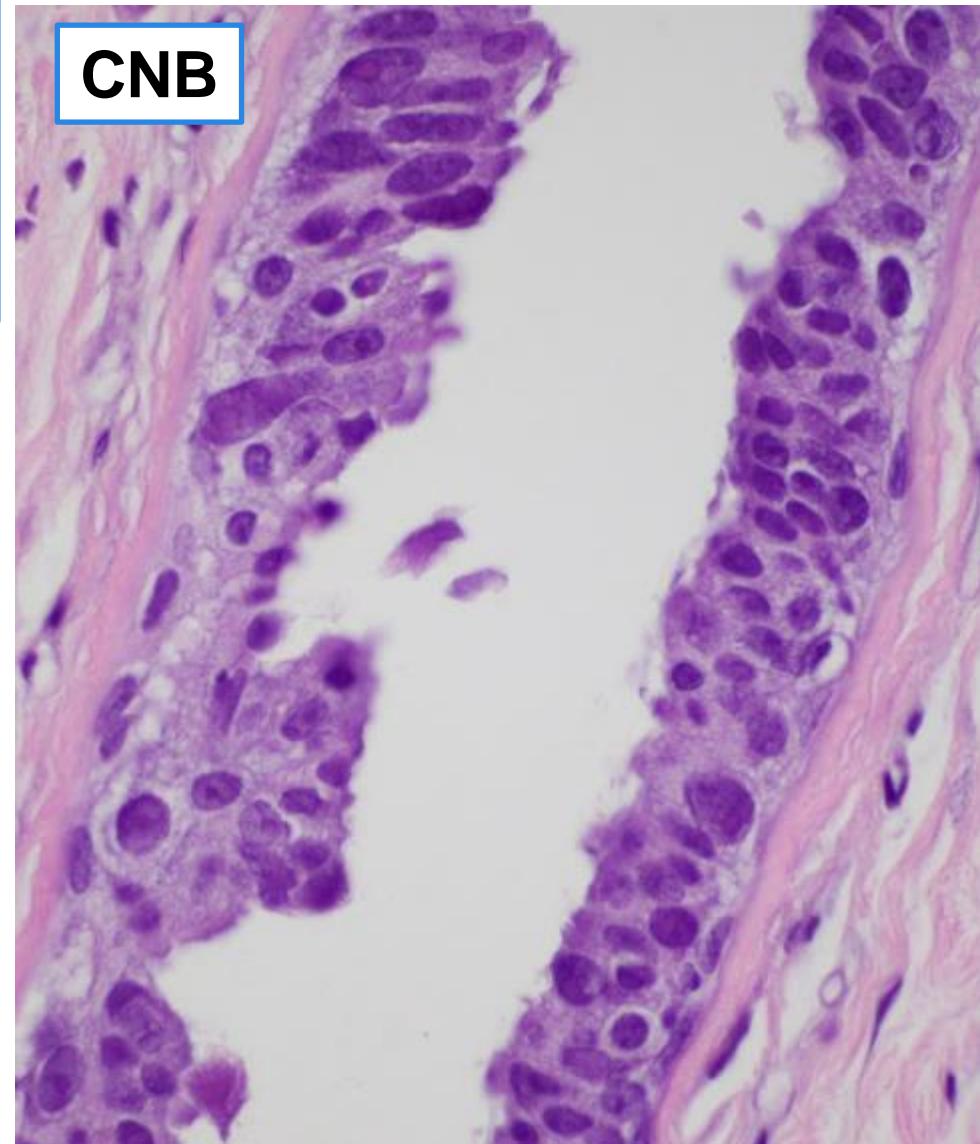
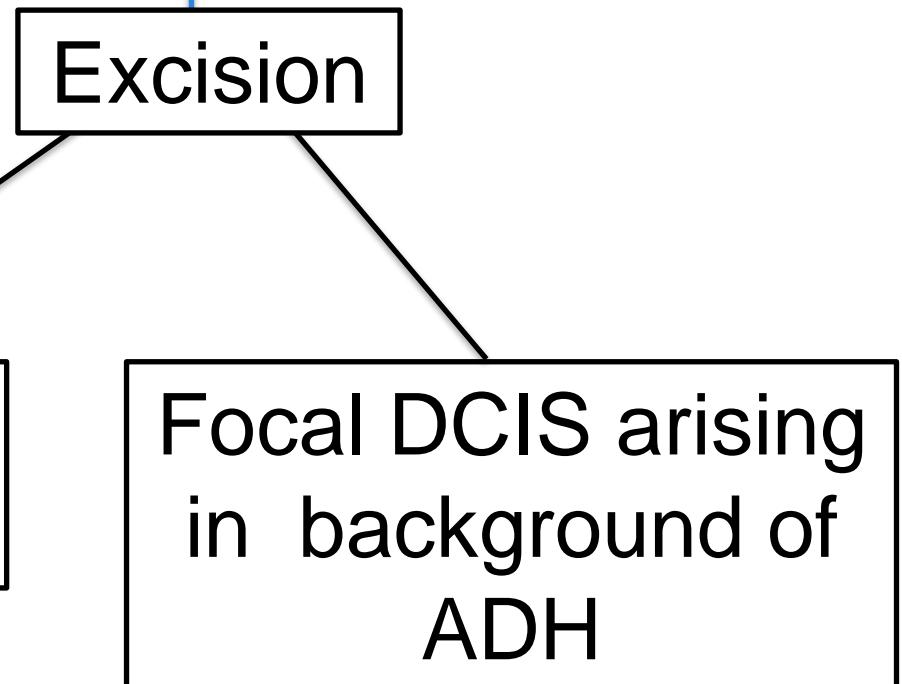
~15,700 CNBs between 1/2012 – 7/2018

106 CNBs with FEA (0.7%)

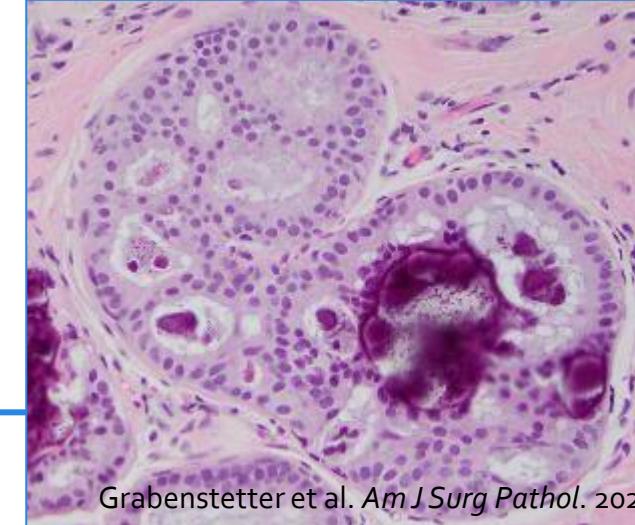
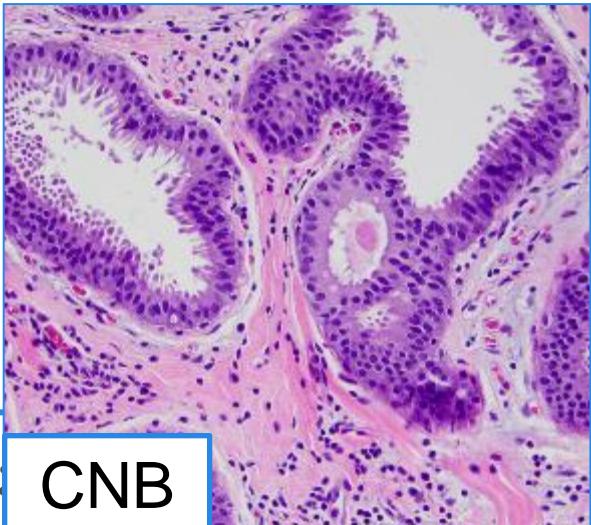
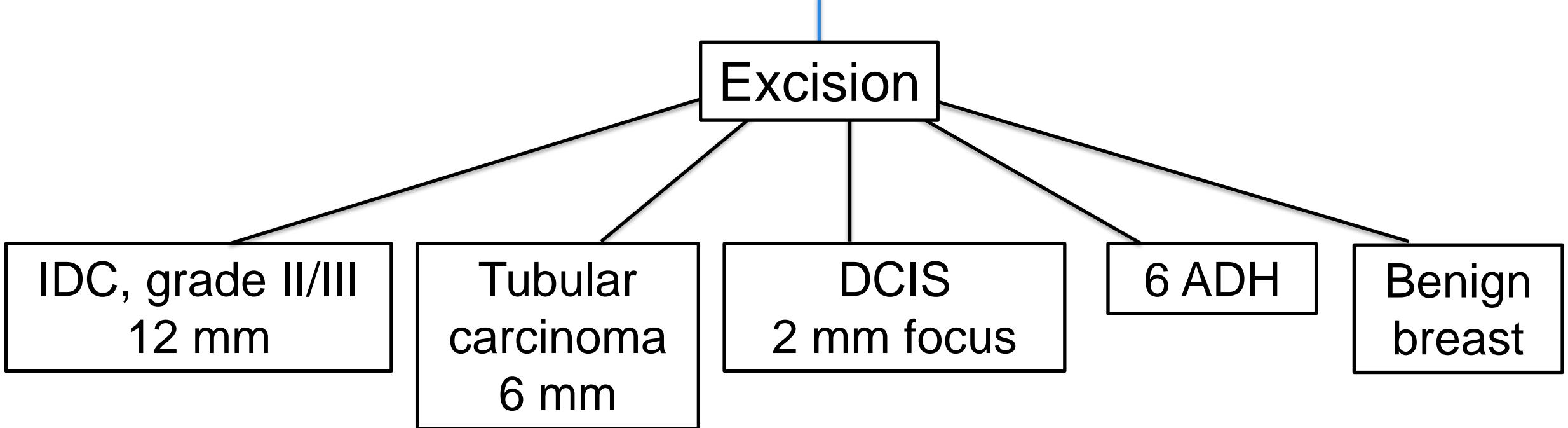
54 CNBs with FEA

2 CNBs: Flat
lesion with
marked atypia

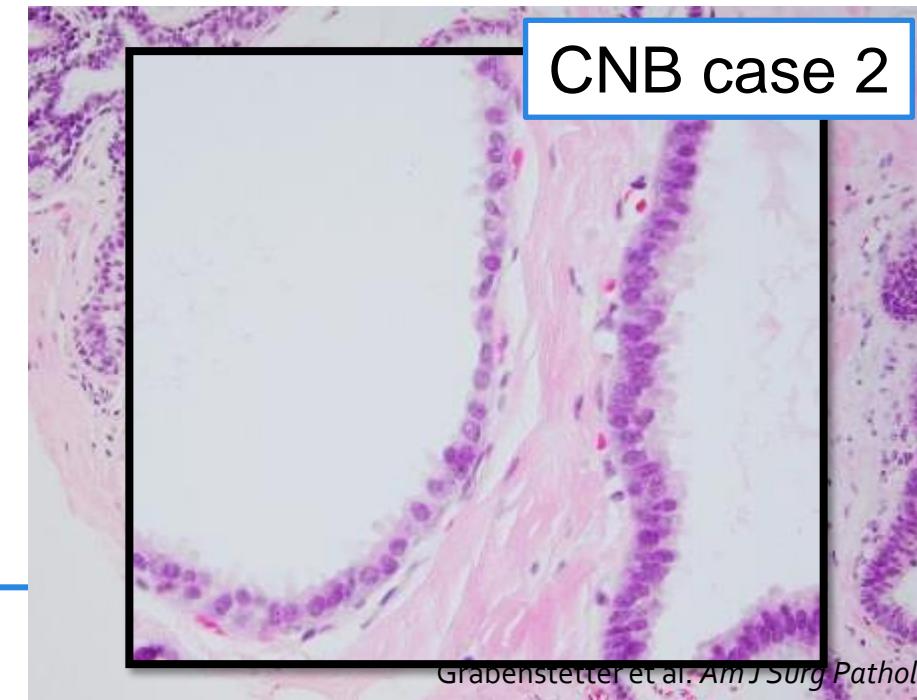
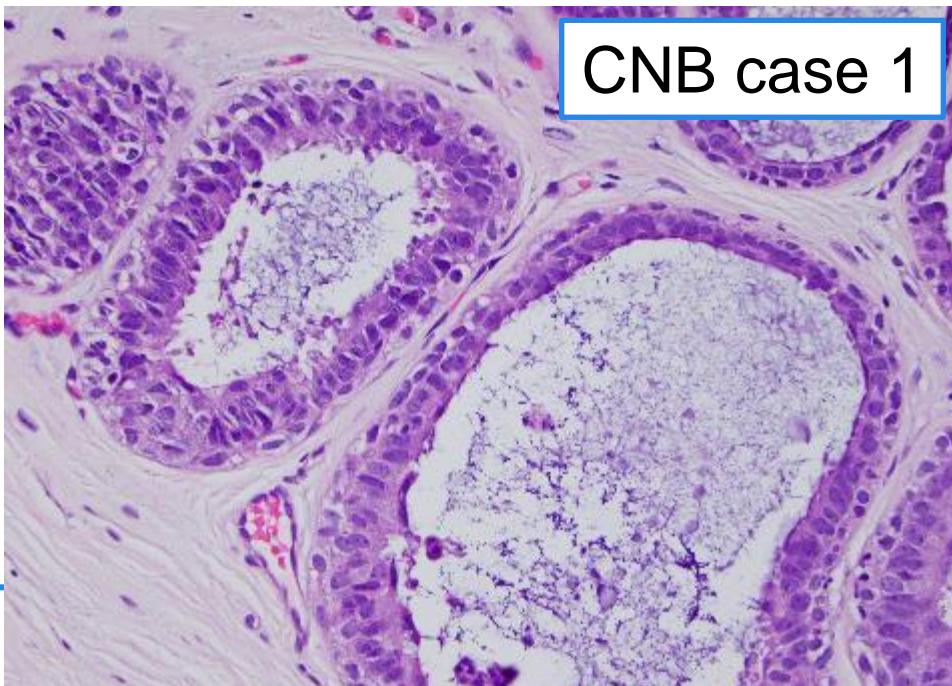
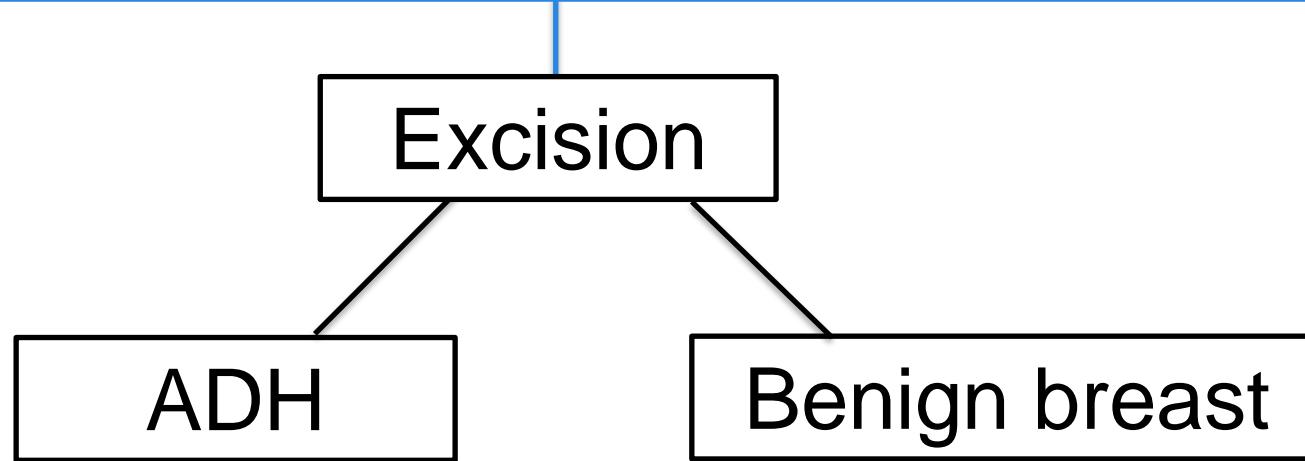
10 CNBs:
ADH



2 CNBs:
Benign (no
atypia)

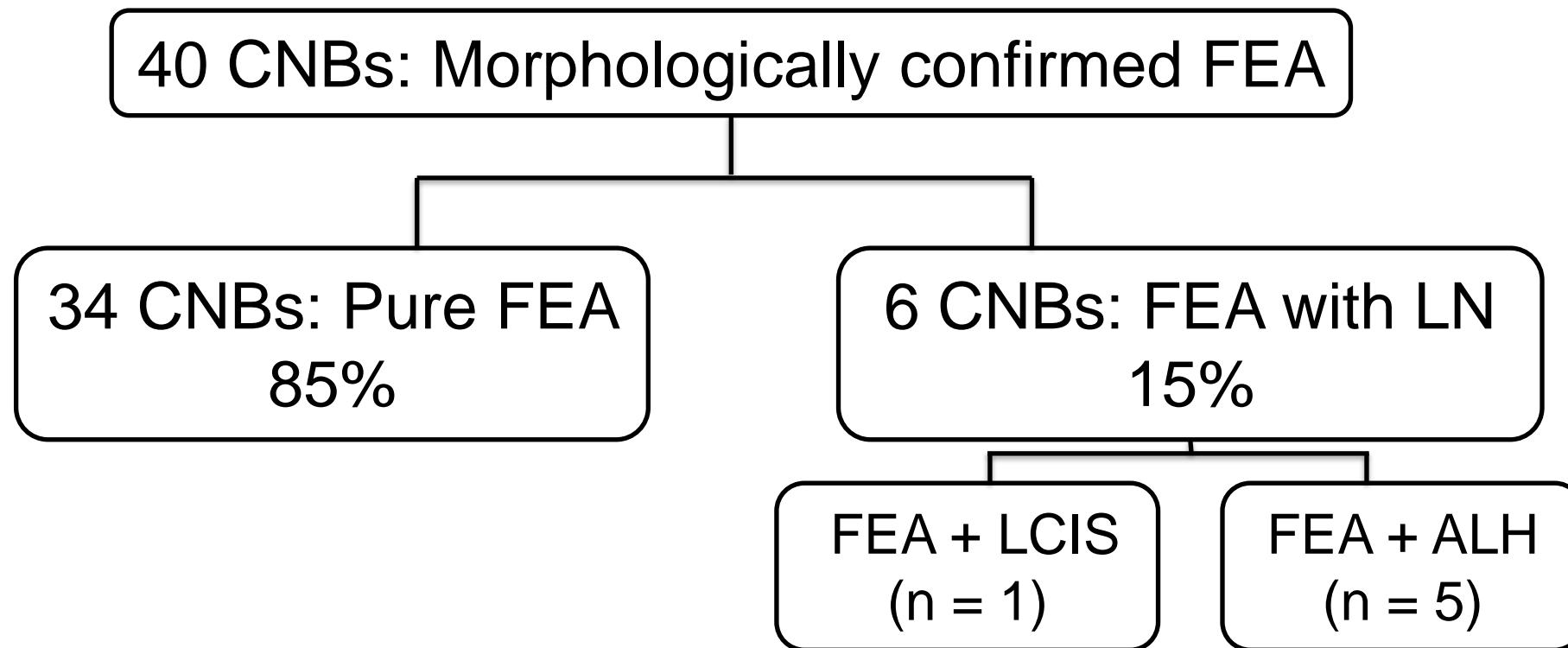
40 CNBs:
Confirmed
FEA




26% reclassified

Two CNBs reclassified as “flat lesion with marked nuclear atypia”

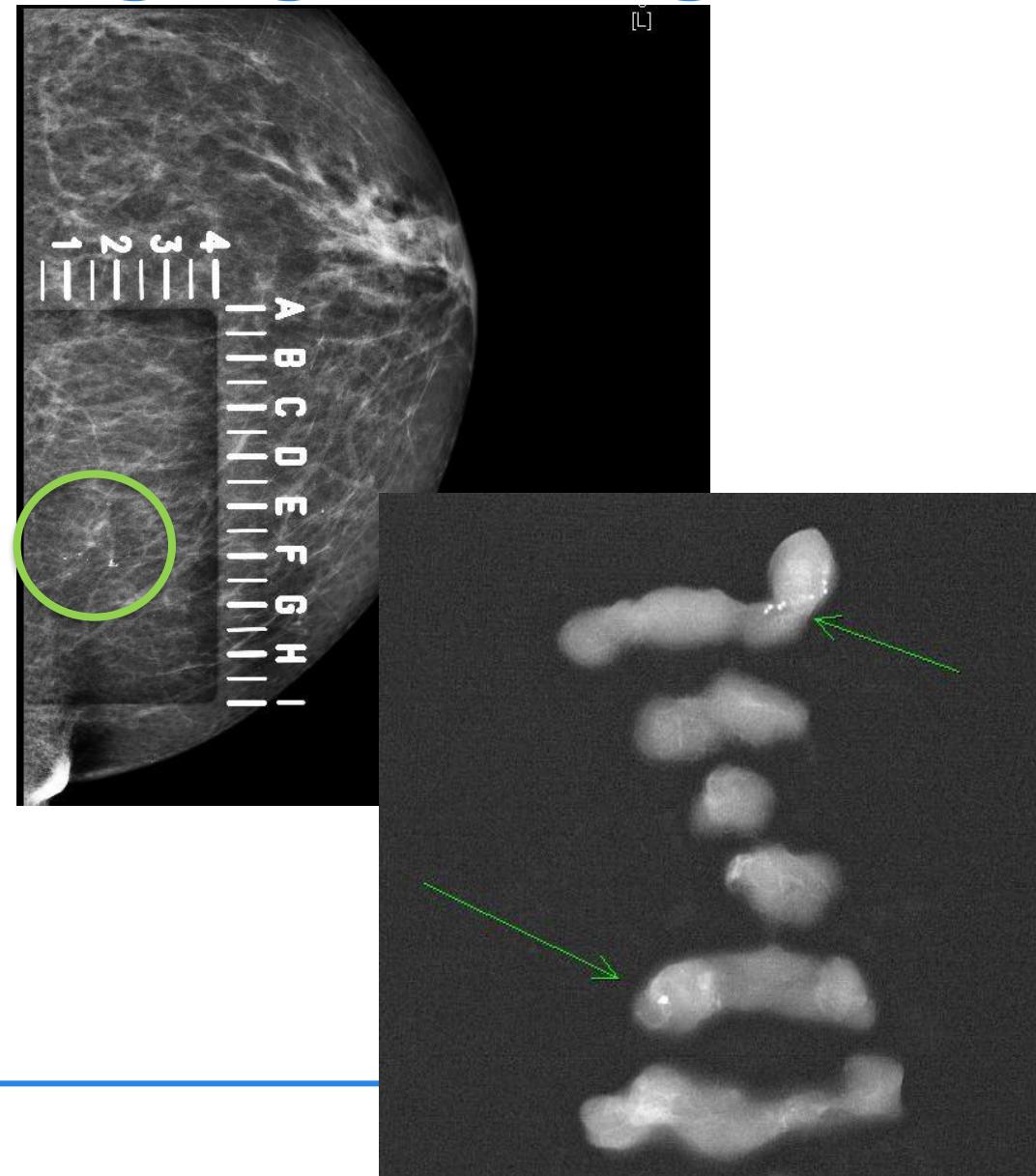
10 CNBs reclassified as ADH



Memorial
Cancer

Two CNBs reclassified as “Benign”

MSK Study: Final FEA Study Cohort



40 CNB from 40 women, median age: 52 years (range 35-73)

Final FEA Study Cohort – Imaging Findings

- Target
 - Calcifications: 36 (90%)
 - MRI NME: 3 (8%)
 - US mass: 1 (2%)
- Average lesion diameter: 8.98 mm (range 2-31)
 - Calcifications: 8.98 mm (2-22)
 - NME: 8.74 mm (6-31)
 - US mass: 11 mm
- Average # cores removed: 8.22 (range 4-14)
- Gauge
 - 9G: 37 (93%)
 - 8G, 11G, 12G: 1 each

FEA on CNB: Upgrade rate

- Upgrade rate to carcinoma was **5% (2/40)**

Case	Age	Mammographic calcifications	CNB Findings	Excision Findings	Cancer associated with Biopsy site
1	73	15 mm coarse heterogenous	2 FEA foci largest 3 mm	IDC, grade II/III 2.2 mm	No
2	46	22 mm amorphous	1 FEA focus 3.7 mm	Tubular carcinoma 2.0 mm and 1.0 mm	No

All upgrades consisted of minute, incidental low grade invasive carcinoma not associated with the biopsy site

Incidence of Adjacent Synchronous Ipsilateral Infiltrating Carcinoma and/or Ductal Carcinoma In Situ in Patients Diagnosed with Flat Epithelial Atypia by Core Needle Biopsy (TBCRC 034)

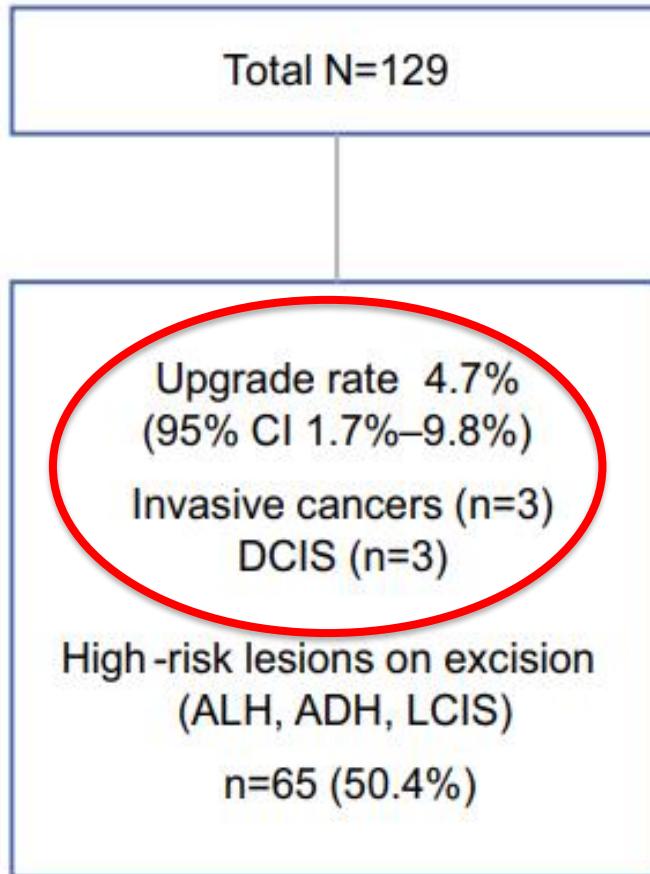
Faina Nakhlis, MD^{1,2,3} , Gabrielle M. Baker, MD^{3,4}, Tianyu Li, MS⁵, Priscilla F. McAuliffe, MD⁶, George Plitas, MD⁷, Kandice K. Ludwig, MD⁸, Marc Boisvert, MD⁹, Laura H. Rosenberger, MD, MS¹⁰, Kristalyn K. Gallagher, DO¹¹, Lisa Jacobs, MD¹², Suniti N. Nimbkar, MD^{1,2,3}, Sheldon Feldman, MD¹³, Paulina Lange, BS^{1,2}, Victoria Attaya, BS^{1,2}, Michelle DeMeo, BS^{1,2}, Ashton Fraettarelli, BA^{1,2}, Stuart J. Schnitt, MD^{2,3,14}, and Tari A. King, MD^{1,2,3}

¹Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA; ²Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; ³Harvard Medical School, Boston, MA; ⁴Beth Israel Deaconess Medical Center, Boston, MA; ⁵Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA; ⁶UPMC Hillman Cancer Center, Pittsburgh, PA; ⁷Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; ⁸Indiana University Cancer Center, Indianapolis, IN; ⁹Georgetown University Cancer Center, Washington, DC; ¹⁰Duke University Medical Center, Durham, NC; ¹¹University of North Carolina, Chapel Hill, NC; ¹²Johns Hopkins University, Baltimore, MD; ¹³Montefiore Medical Center, New York, NY; ¹⁴Department of Pathology, Brigham and Women's Hospital, Boston, MA

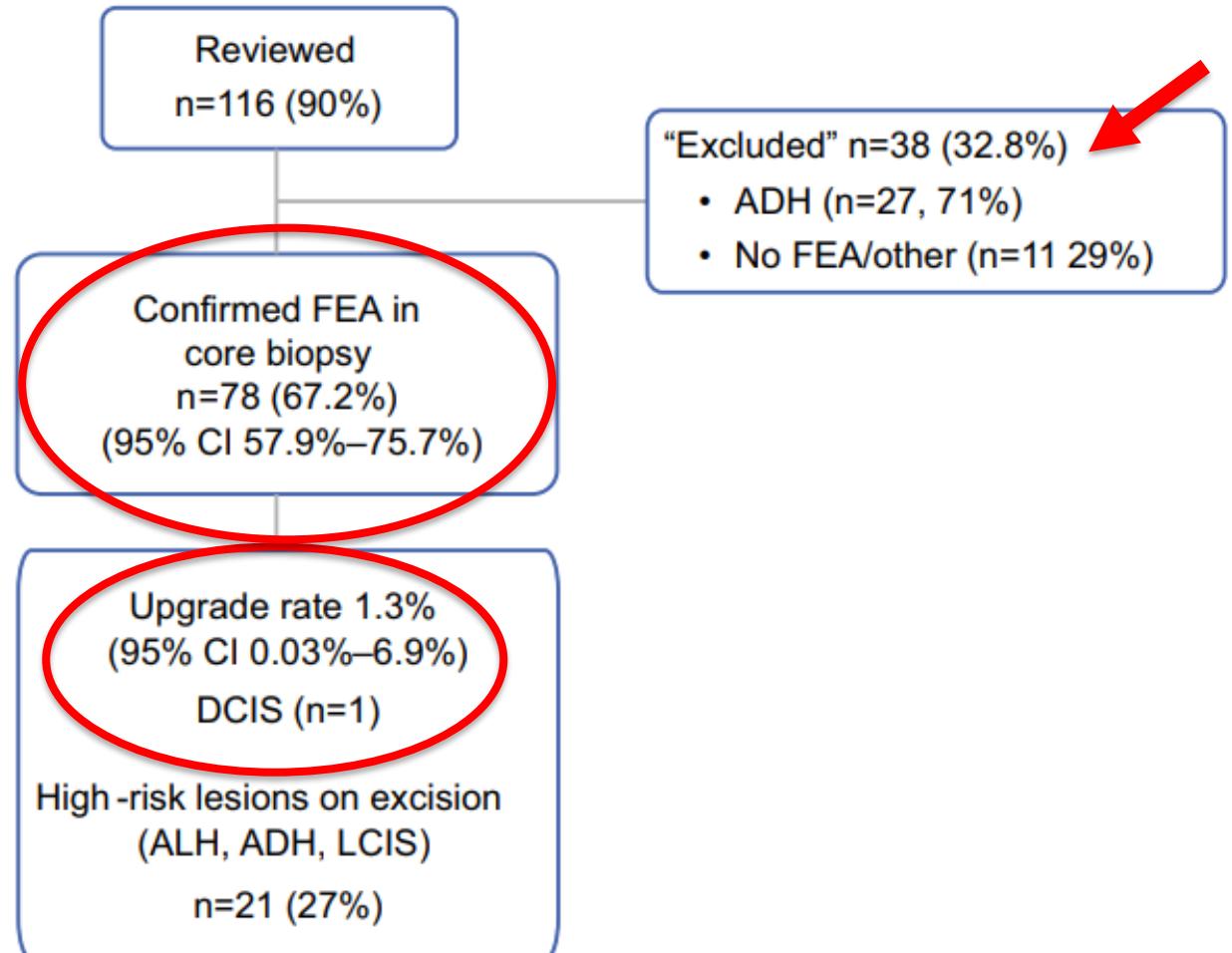
Ann Surg Oncol 2025; 32: 2578-2584.

Prospective multicenter study (9 sites)

Inclusion: women with FEA on a rad-path concordant core biopsy


Exclusion: clinical concern (e.g. palpable mass, nipple discharge), ADH or non-classic LCIS in same biopsy, history of DCIS and/or invasive breast cancer

Primary objective: evaluate the frequency with which FEA diagnosed on core needle biopsy was upgraded to DCIS or invasive breast cancer upon surgical excision



TBCRC 034: Results

Local Pathology Review

Central Pathology Review

TBCRC 034: Results

TABLE 3 Lesions associated with an increased future breast cancer risk found on excision of FEA

	Local pathology (n = 129)	Central pathology (n = 78*)
ADH	27 (20.9%)	18 (23.1%)
ALH and/or LCIS	33 (25.6%)	3 (3.9%)
ADH and LCIS	5 (3.9%)	0
Total	65 (50.4%)	21 (27%)

FEA flat epithelial atypia, ADH atypical ductal hyperplasia, ALH atypical lobular hyperplasia, LCIS lobular carcinoma in situ

*Central pathology review confirmed FEA core biopsy diagnosis in 78 of 129 cases

High risk lesions were found in 50.4% of cases by local pathology review and in 27% by central review

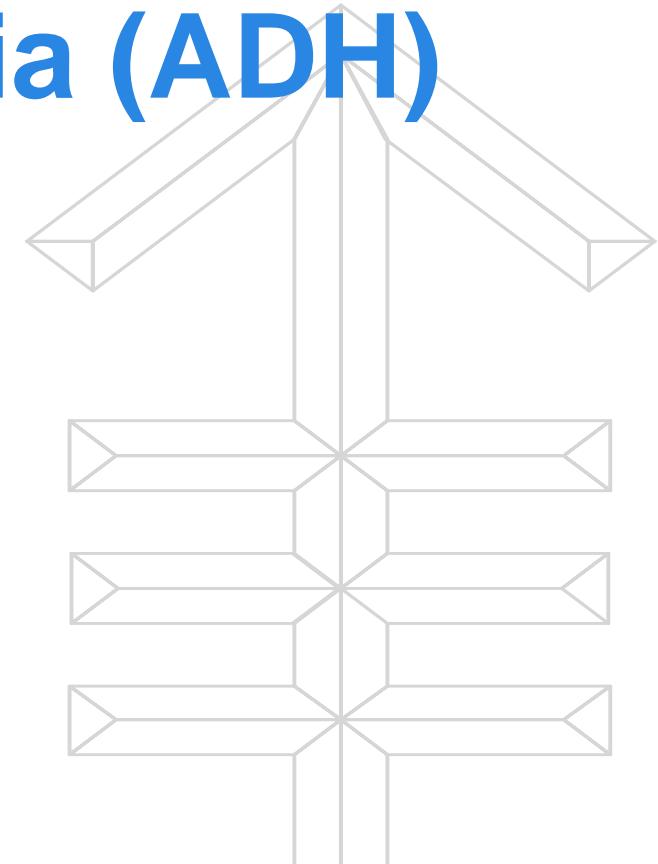
TBCRC 034: Conclusions

- Central review confirmed FEA in only 78/116 (67.2%) cases
 - Recommend obtaining second opinion to confirm
- FEA diagnosis is rare and robust prospective data demonstrating the safety of observation are not yet available however shows similar upgrade rates as those seen in classic lobular neoplasia
 - Reasonable to infer the safety of observation from the data on ALH and classic LICS
- High prevalence of high risk lesions (ADH, ALH, classic LCIS)
 - Referral for comprehensive risk assessment may be considered for patients with FEA

Observation may be clinically acceptable, depending on patient's risk factors. Management discussion with multidisciplinary treatment team is advised.

Management of FEA on CNB

FEA
IF no prior/concurrent
carcinoma
AND
Rad-path concordance


No Excision
Routine imaging

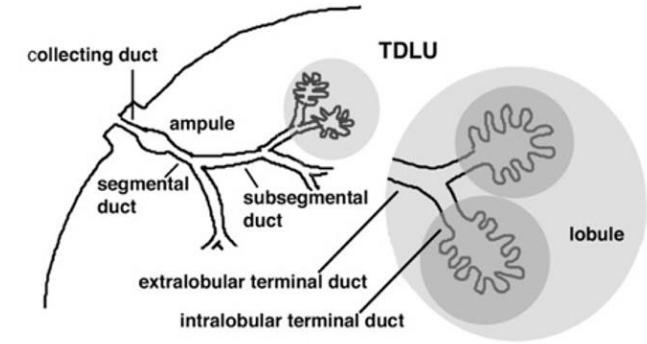
FEA
WITH prior/concurrent
carcinoma
OR
Rad-path discordance

Surgical Excision

Atypical Ductal Hyperplasia (ADH)

Atypical Ductal Hyperplasia (ADH)

- Increased risk: 3-5x
- Absolute risk of breast cancer: 1% per year for at least 25 years
- Mean latency period: 8-12 years
- ~30% are “upgraded” on excision
 - Reported range: 0-80%


Core Biopsy of the Breast With Atypical Ductal Hyperplasia

A Probabilistic Approach to Reporting

Kim A. Ely, M.D., Beverley A. Carter, M.D., Roy A. Jensen, M.D.,
Jean F. Simpson, M.D., and David L. Page, M.D.

Am J Surg Pathol. 2001; 25 (8): 1017-1021.

47 CNB
with ADH

Extent of ADH

1 or 2 foci:
24 (51.1%)

3 foci:
8 (17%)

≥4 foci:
15 (31.9%)

**Overall
upgrade
rate: 36%**

NO upgrades
0%

4 upgrades
50%

3 DCIS, 1 IC

13 upgrades
86.6%

12 DCIS, 1 IC

Conclusion: Limited ADH probably do not require further surgical intervention, particularly if the mammographic abnormality has been removed.

ADH in Directional VAB of Breast Microcalcifications: Considerations for Surgical Excision

- Cohort: 140 patients
 - 121 excised, 19 observed
- Extent of ADH, histologic pattern, significant atypia, presence of necrosis
- Upgrade rate: **13.2% (16/121)**
 - 14 DCIS, 2 Invasive

Variable	Patients	Upgrades	P value
≤95% Ca ⁺⁺ removed	94	14 (14.9%)	.0371
>95% Ca ⁺⁺ removed	42	1 (2.4%)	
≤2 TDLU	81	5 (6.2%)	.0306
>2 TDLU	59	11 (18.6%)	
Cytologic atypia	20	12 (60%)	
No Cytologic atypia	120	4 (3.3%)	<.0001
Necrosis	5	4 (80%)	
No Necrosis	135	12 (8.9%)	.0006

TABLE 2 Comparison of histologic findings (number of TDLU involved by ADH and presence of significant cytologic atypia and/or necrosis) in relation to rate of upgrade to carcinoma

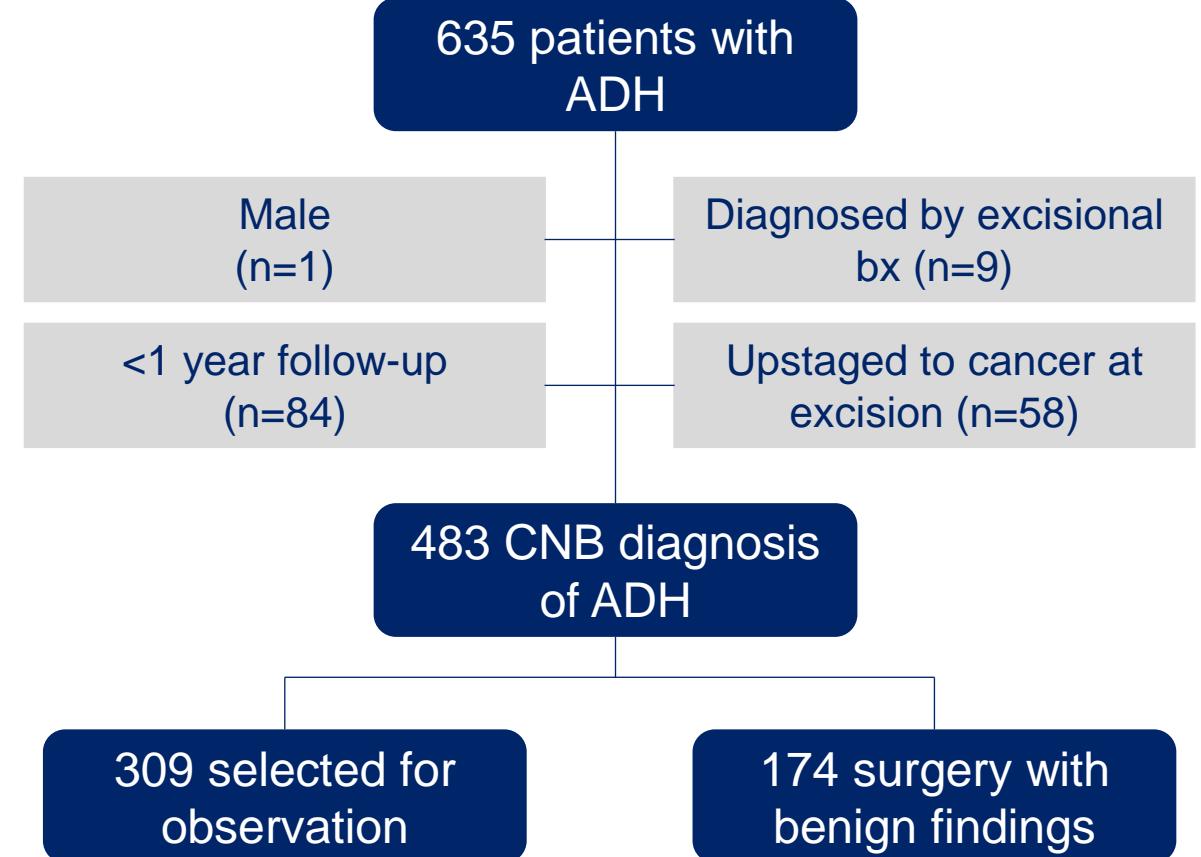
Extent of ADH on DVAB	Presence of significant cytologic atypia and/or necrosis	Corresponding surgical excision/mammographic follow-up		Univariate <i>P</i> value (Fisher exact test)
		No carcinoma (<i>n</i> = 124)	DCIS/invasive carcinoma (<i>n</i> = 16)	
≤2 TDLU	No	72 (97.3%)	2 (2.7%)	.0038
	Yes	4 (57.1%)	3 (42.9%)	
>2 TDLU	No	42 (97.7%)	1 (2.3%)	<.0001
	Yes	5 (33.3%)	10 (66.7%)	

ADH atypical ductal hyperplasia, DCIS ductal carcinoma in situ, DVAB directional vacuum-assisted biopsy, TDLU terminal duct-lobular unit or large duct

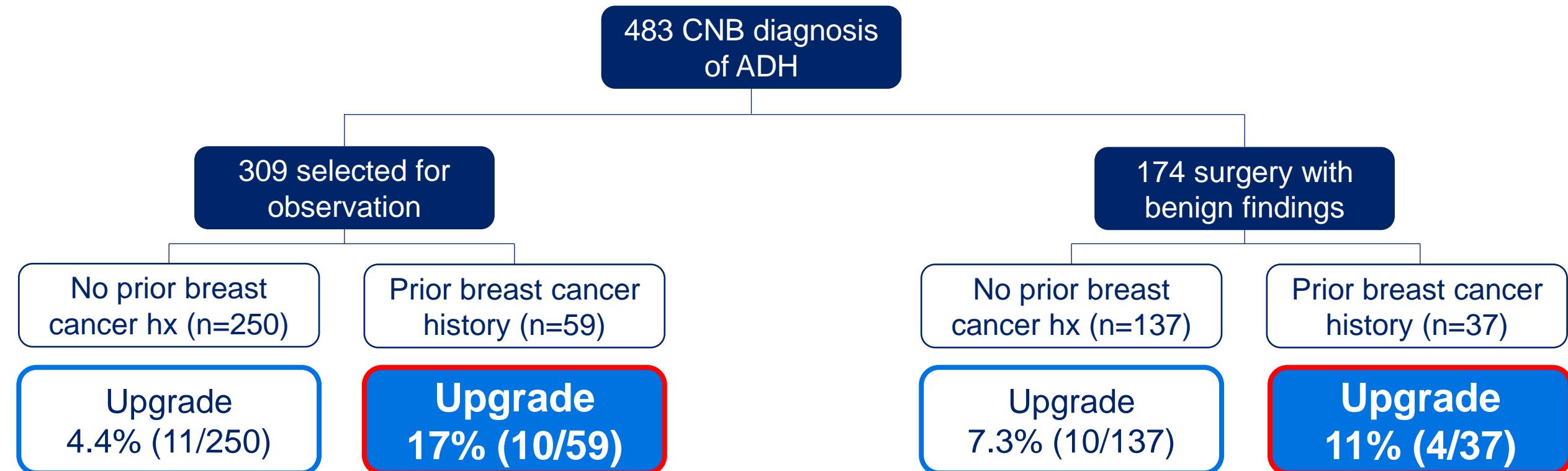
ADH with significant cytologic atypia and/or necrosis should be excised

Cases involving ≤2 TDLUs, with >95% removal of targeted Ca⁺⁺ and no significant atypia/necrosis may undergo imaging follow up

Long-term safety of observation

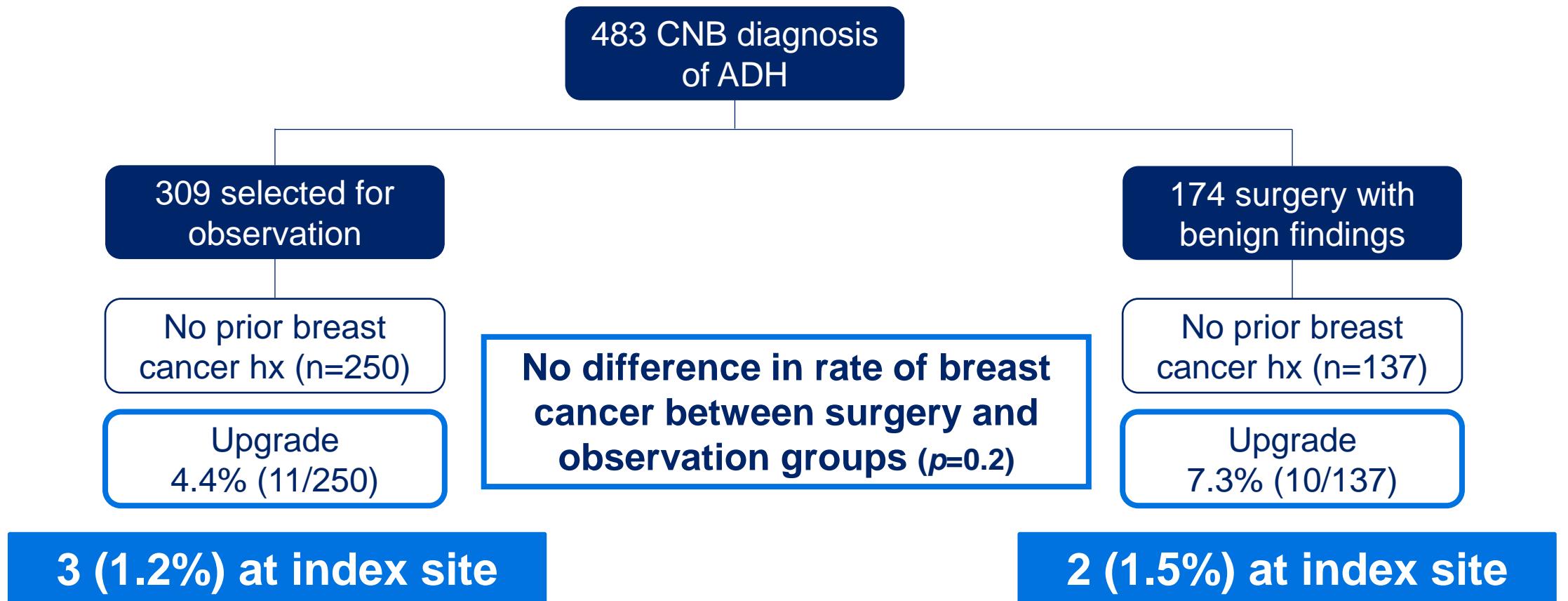

Expanded criteria: <3 TDLUs, >90% Ca⁺⁺ removed, no necrosis/atypia, no mass lesion or architectural distortion, >50% Ca⁺⁺ removed of well-sampled target

96 had personal hx of breast cancer

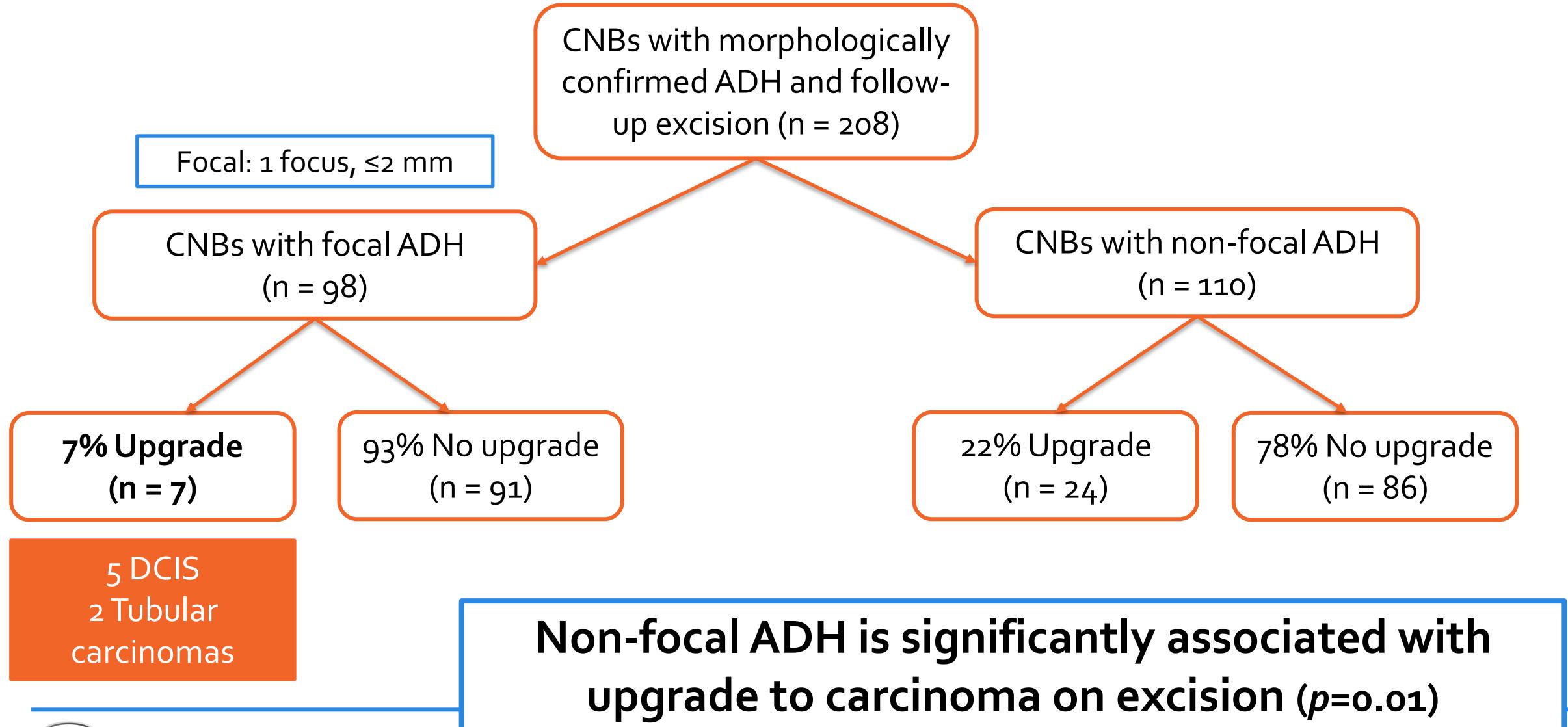

Median follow-up: 5.2 years (range 1.1-15.3)

Women ≤ 50 y more likely to have surgery (42.4% vs 33.2%, $p=0.04$)

Women dx by stereotactic bx more likely to be observed than if dx by US or MRI bx (67.2% vs 43.1%, $p=0.001$)



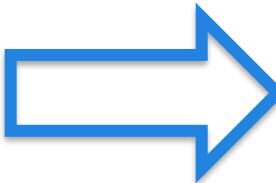
Long term safety of observation


Prior history of breast cancer was only factor associated with subsequent breast cancer risk ($p=0.04$)

Long term safety of observation

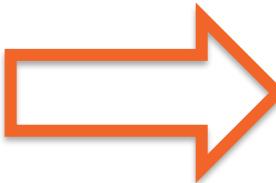
Conclusion: Risk of cancer at index site (i.e. site of ADH biopsy) is exceedingly low. Observation, rather than surgical excision, is safe in selected women that have a core biopsy diagnosis of ADH.

MSK Study: Focal ADH on CNB


Upgraded cases showing focal ADH on core biopsy

Imaging Findings					Excision Findings			
Case	Imaging modality	Lesion type	Lesion diameter (mm)	Target removed by CNB	DCIS at excision	DCIS grade	Invasive carcinoma at excision	Invasive carcinoma type
1	MMG	Ca ⁺⁺	7	No	Yes (3 mm)	Intermediate (with Ca ⁺⁺)	No	-
2	US	Mass	8	No	Yes	Low	No	-
3	MMG	Ca ⁺⁺	5	No	Yes (2.1 mm)	Low (with Ca ⁺⁺)	No	-
4	MMG	Ca ⁺⁺	8	No	Yes (30 mm)	Intermediate (with Ca ⁺⁺)	No	-
5	MMG	Ca ⁺⁺	4	Yes	Yes (12 mm)	Intermediate (with Ca ⁺⁺)	No	-
6	MMG	Ca ⁺⁺	7	Yes	No	-	Yes (4.5 mm)	Tubular * carcinoma
7	MMG	Ca ⁺⁺	6	No	No	-	Yes (6 mm)	Tubular * carcinoma

*Not associated with biopsy site


Management of ADH on CNB

Focal ADH
WITH
Rad-path concordance

In select clinical cases:
No Excision
Close imaging follow up

ADH

Surgical Excision

Core Needle Biopsy Lesion	MSK Upgrade Rate	Excision Recommended	Exceptions
Intraductal papilla without atypia	2.3%	No*	Concurrent ipsilateral breast cancer (upgrade rate 16.6%)
Intraductal papilla with atypia	Up to 41% (non-MSK data)	Yes	
Radial scar/complex sclerosing lesion without atypia	1%	No*	
Radial scar/complex sclerosing lesion with atypia	11-33% (non-MSK data)	Yes	
Mucocele-like lesion without atypia	0%	No*	Consider excision if mass lesion found on ultrasound
Mucocele-like lesion with atypia	22%	Yes	
Classic LCIS and ALH	3%	No*	
Non-classic LCIS	19%	Yes	
Flat epithelial atypia (FEA)	5%	No*	Personal history of breast cancer
Atypical Ductal Hyperplasia (ADH)	22%	Yes	Focal ADH (1 focus, <2 mm): if clinical need arises imaging follow up can be considered (upgrade rate 7%)

*Radiologic-pathologic concordance is required

E-mail:
grabensa@mskcc.org